cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366082 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x-x^2) ).

Original entry on oeis.org

1, 2, 6, 21, 79, 308, 1219, 4826, 18857, 71574, 257553, 837114, 2140496, 1379550, -35589730, -370646635, -2719034151, -17429175486, -103771133876, -588804389677, -3225403649859, -17180039158530, -89342552789741, -454604059204324, -2265246385921936
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(3*n-k+1, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(3*n-k+1,n-2*k).

A366083 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x-x^2) ).

Original entry on oeis.org

1, 3, 14, 78, 478, 3109, 21063, 146997, 1049302, 7624330, 56198481, 419155136, 3157356819, 23984387314, 183519131353, 1413099475142, 10941294442694, 85132006090350, 665294548097852, 5219591907202092, 41095469624286421, 324595783790966343
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(4*n-k+2, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(4*n-k+2,n-2*k).
Showing 1-2 of 2 results.