A246437
Expansion of (1/2)*(1/(x+1)+1/(sqrt(-3*x^2-2*x+1))).
Original entry on oeis.org
1, 0, 2, 3, 10, 25, 71, 196, 554, 1569, 4477, 12826, 36895, 106470, 308114, 893803, 2598314, 7567465, 22076405, 64498426, 188689685, 552675364, 1620567764, 4756614061, 13974168191, 41088418150, 120906613076, 356035078101, 1049120176954
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..2100
- Christos A. Athanasiadis and Christina Savvidou, The Local h-Vector of the Cluster Subdivision of a Simplex, Séminaire Lotharingien de Combinatoire 66 (2012), Article B66c.
- Eric Marberg, On some actions of the 0-Hecke monoids of affine symmetric groups, arXiv:1709.07996 [math.CO], 2017.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 24.
-
CoefficientList[Series[(1/2) (1 / (x + 1) + 1 / (Sqrt[-3 x^2 - 2 x + 1])), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 14 2014 *)
Table[(-1)^n (Hypergeometric2F1[1/2, -n, 1, 4] + 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)
Table[Sum[Binomial[n, k] Binomial[n - k - 1, n - 2 k], {k, 0, n/2}], {n, 0, 28}] (* Michael De Vlieger, Apr 25 2016 *)
-
a(n):=sum(binomial(n,k)*binomial(n-k-1,n-2*k),k,0,n/2);
-
def a(n):
if n < 3: return [1,0,2][n]
return n*hypergeometric([1-n, 1-n/2, 3/2-n/2],[2, 2-n], 4)
[simplify(a(n)) for n in (0..28)] # Peter Luschny, Nov 14 2014
A104505
Triangle, read by rows, equal to the right-hand side of the triangle A084610, with row n listing the coefficients of (1+x-x^2)^n: T(n,k) = [x^(n+k)] (1+x-x^2)^n, for n>=k>=0.
Original entry on oeis.org
1, 1, -1, -1, -2, 1, -5, 0, 3, -1, -5, 8, 2, -4, 1, 11, 15, -10, -5, 5, -1, 41, -6, -30, 10, 9, -6, 1, 29, -77, -14, 49, -7, -14, 7, -1, -125, -120, 112, 56, -70, 0, 20, -8, 1, -365, 117, 288, -126, -126, 90, 12, -27, 9, -1, -131, 770, 45, -540, 90, 228, -105, -30, 35, -10, 1, 1409, 946, -1265, -495, 858, 33, -363, 110, 55, -44
Offset: 0
Rows begin:
1;
1,-1;
-1,-2,1;
-5,0,3,-1;
-5,8,2,-4,1;
11,15,-10,-5,5,-1;
41,-6,-30,10,9,-6,1;
29,-77,-14,49,-7,-14,7,-1;
-125,-120,112,56,-70,0,20,-8,1;
-365,117,288,-126,-126,90,12,-27,9,-1;
-131,770,45,-540,90,228,-105,-30,35,-10,1; ...
-
T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
-
T(n,k)=if(n
A370616
Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^n.
Original entry on oeis.org
1, 0, 2, 3, 14, 35, 125, 371, 1238, 3909, 12847, 41580, 136577, 447187, 1473341, 4855703, 16053830, 53138243, 176233967, 585202261, 1945964079, 6478043120, 21588979876, 72016891508, 240452892569, 803489258285, 2686964354375, 8991840800136, 30110638705889
Offset: 0
-
Table[Sum[Binomial[-1 - k + n, -2*k + n] Binomial[-1 + k + n, k], {k, 0, n/2}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));
A386548
a(n) = [x^n] ((1 - x)/(1 - x + x^2))^n.
Original entry on oeis.org
1, 0, -2, -3, 6, 25, 1, -147, -218, 591, 2223, -484, -14871, -18759, 68353, 222697, -116058, -1629671, -1656989, 8275203, 23266031, -20154144, -184550412, -141418628, 1019061001, 2468408775, -3122976521, -21213927840, -10837119735, 126256071125, 262294667301, -456407675223
Offset: 0
-
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 0 elif n = 2 then -2 else
( 2*(n-1)*(2*n-3)*(19*n^2-60*n+36)*a(n-1) - 2*(190*n^4-1170*n^3+2519*n^2-2229*n+666)*a(n-2) - 2*(n-3)*(2*n-3)*(19*n^2-41*n+18)*a(n-3) )/(3*n*(n-1)*(19*n^2-79*n+78)) fi; end:
seq(a(n), n = 0..30);
-
a[n_]:=SeriesCoefficient[((1 - x)/(1 - x + x^2))^n,{x,0,n}]; Array[a,32,0] (* Stefano Spezia, Jul 29 2025 *)
-
a(n) = my(x='x+O('x^(n+1))); polcoef(((1 - x)/(1 - x + x^2))^n, n); \\ Michel Marcus, Aug 03 2025
A104506
Column 1 of triangle A104505, which is equal to the right-hand side of the triangle A084610 of coefficients in (1 + x - x^2)^n.
Original entry on oeis.org
0, -1, -2, 0, 8, 15, -6, -77, -120, 117, 770, 946, -1728, -7735, -6930, 22800, 76960, 42245, -282150, -751640, -125800, 3341205, 7145710, -2002725, -38228232, -65418925, 55550014, 424605078, 566938400, -936604097, -4587287310
Offset: 0
Showing 1-5 of 5 results.
Comments