cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246437 Expansion of (1/2)*(1/(x+1)+1/(sqrt(-3*x^2-2*x+1))).

Original entry on oeis.org

1, 0, 2, 3, 10, 25, 71, 196, 554, 1569, 4477, 12826, 36895, 106470, 308114, 893803, 2598314, 7567465, 22076405, 64498426, 188689685, 552675364, 1620567764, 4756614061, 13974168191, 41088418150, 120906613076, 356035078101, 1049120176954
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 14 2014

Keywords

Comments

a(2101) has 1001 decimal digits. - Michael De Vlieger, Apr 25 2016
This is the analog for Coxeter type B of Motzkin sums (A005043) for Coxeter type A, see the article by Athanasiadis and Savvidou. - F. Chapoton, Jul 20 2017
Number of compositions of n into exactly n nonnegative parts avoiding part 1. a(4) = 10: 0004, 0022, 0040, 0202, 0220, 0400, 2002, 2020, 2200, 4000. - Alois P. Heinz, Aug 19 2018
From Peter Bala, Jan 07 2022: (Start)
The binary transform is A088218. The inverse binomial transform is a signed version of A027306 and the second inverse binomial transform is a signed version of A027914.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for primes p >= 5 and positive integers n and k. (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1/2) (1 / (x + 1) + 1 / (Sqrt[-3 x^2 - 2 x + 1])), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 14 2014 *)
    Table[(-1)^n (Hypergeometric2F1[1/2, -n, 1, 4] + 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)
    Table[Sum[Binomial[n, k] Binomial[n - k - 1, n - 2 k], {k, 0, n/2}], {n, 0, 28}] (* Michael De Vlieger, Apr 25 2016 *)
  • Maxima
    a(n):=sum(binomial(n,k)*binomial(n-k-1,n-2*k),k,0,n/2);
    
  • Sage
    def a(n):
        if n < 3: return [1,0,2][n]
        return n*hypergeometric([1-n, 1-n/2, 3/2-n/2],[2, 2-n], 4)
    [simplify(a(n)) for n in (0..28)] # Peter Luschny, Nov 14 2014

Formula

a(n) = Sum_{k = 0..n/2} binomial(n,k)*binomial(n-k-1,n-2*k).
A(x) = 1 + x*B'(x)/B(x), where B(x) = (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)) is the o.g.f. of A005043.
a(n) = n*hypergeom([1-n, 1-n/2, 3/2-n/2],[2, 2-n], 4) for n>=3. - Peter Luschny, Nov 14 2014
a(n) ~ 3^(n+1/2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 14 2014
a(n) = (-1)^n*(hypergeom([1/2, -n], [1], 4) + 1)/2. - Vladimir Reshetnikov, Apr 25 2016
D-finite with recurrence: n*(a(n) - a(n-1)) = (5*n-6)*a(n-2) + 3*(n-2)*a(n-3). - Vladimir Reshetnikov, Oct 13 2016
a(n) = [x^n]( (1 - x + x^2)/(1 - x) )^n. - Peter Bala, Jan 07 2022

A104505 Triangle, read by rows, equal to the right-hand side of the triangle A084610, with row n listing the coefficients of (1+x-x^2)^n: T(n,k) = [x^(n+k)] (1+x-x^2)^n, for n>=k>=0.

Original entry on oeis.org

1, 1, -1, -1, -2, 1, -5, 0, 3, -1, -5, 8, 2, -4, 1, 11, 15, -10, -5, 5, -1, 41, -6, -30, 10, 9, -6, 1, 29, -77, -14, 49, -7, -14, 7, -1, -125, -120, 112, 56, -70, 0, 20, -8, 1, -365, 117, 288, -126, -126, 90, 12, -27, 9, -1, -131, 770, 45, -540, 90, 228, -105, -30, 35, -10, 1, 1409, 946, -1265, -495, 858, 33, -363, 110, 55, -44
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Matrix inverse is triangle A104509 and is related to Fibonacci numbers. Column 0 equals A098331, with g.f.: 1/sqrt(1-2*x+5*x^2). Column 1 equals A104506, with g.f.: ((1-x)/sqrt(1-2*x+5*x^2)-1)/(2*x). Row sums equal A104507. Absolute row sums equal A104508.
Array (1/sqrt(1-2x+5x^2), (1-x-sqrt(1-2x+5x^2))/(2x)), in Riordan array notation. Product of A120616 by A007318. - Paul Barry, Jun 17 2006

Examples

			Rows begin:
1;
1,-1;
-1,-2,1;
-5,0,3,-1;
-5,8,2,-4,1;
11,15,-10,-5,5,-1;
41,-6,-30,10,9,-6,1;
29,-77,-14,49,-7,-14,7,-1;
-125,-120,112,56,-70,0,20,-8,1;
-365,117,288,-126,-126,90,12,-27,9,-1;
-131,770,45,-540,90,228,-105,-30,35,-10,1; ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Coefficient[(1 + x - x^2)^n, x, n + k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 27 2019 *)
  • PARI
    T(n,k)=if(n
    				

Formula

T(n, 0) = A098331(n). T(n, 1) = n*A007440(n) (n>0).
Column k has e.g.f. exp(x)*Bessel_I(k,2*sqrt(-1)x)*(sqrt(-1))^k. - Paul Barry, Jun 17 2006
From Peter Bala, Jun 29 2015: (Start)
Matrix factorization in the Riordan group: ( 1/(1 - x), x/(1 - x) ) * ( 1/sqrt(1 + 4*x^2), (1 - sqrt(1 + 4*x^2))/(2*x) ) = A007318 * signed version of A108044.
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = (1 - x - sqrt(1 - 2*x + 5*x^2))/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = x^2 + x - 1. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

A370616 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^n.

Original entry on oeis.org

1, 0, 2, 3, 14, 35, 125, 371, 1238, 3909, 12847, 41580, 136577, 447187, 1473341, 4855703, 16053830, 53138243, 176233967, 585202261, 1945964079, 6478043120, 21588979876, 72016891508, 240452892569, 803489258285, 2686964354375, 8991840800136, 30110638705889
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[-1 - k + n, -2*k + n] Binomial[-1 + k + n, k], {k, 0, n/2}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2) / (1-x) ).
From Peter Bala, 26 Jul 2025: (Start)
a(n) = n * hypergeom([1 + n, 1 - n/2, 3/2 - n/2], [2, 2 - n], -4) for n >= 3.
P-recursive: 5*n*(74*n^3-493*n^2+1075*n-766)*(n-1)*a(n) = 2*(n-1)*(296*n^4-2120*n^3+5393*n^2-5716*n+2100)*a(n-1) + 2*(1184*n^5-10256*n^4+34088*n^3-53995*n^2+40397*n-11250)*a(n-2) - 2*(n-3)*(2*n-5)*(74*n^3-271*n^2+311*n-110)*a(n-3) with a(0) = 1, a(1) = 0 and a(2) = 2.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k. (End)
a(n) ~ sqrt(1/12 + sqrt(10/37)*(sin(arcsin((13*sqrt(37/10))/40)/3)/3)) * (8*((1 + sqrt(34)*cos(arccos(2461/(1088*sqrt(34)))/3))/15))^n / sqrt(Pi*n). - Vaclav Kotesovec, Jul 30 2025

A386548 a(n) = [x^n] ((1 - x)/(1 - x + x^2))^n.

Original entry on oeis.org

1, 0, -2, -3, 6, 25, 1, -147, -218, 591, 2223, -484, -14871, -18759, 68353, 222697, -116058, -1629671, -1656989, 8275203, 23266031, -20154144, -184550412, -141418628, 1019061001, 2468408775, -3122976521, -21213927840, -10837119735, 126256071125, 262294667301, -456407675223
Offset: 0

Views

Author

Peter Bala, Jul 25 2025

Keywords

Comments

The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 5 and all positive integers n and k.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 0 elif n = 2 then -2 else
    ( 2*(n-1)*(2*n-3)*(19*n^2-60*n+36)*a(n-1) - 2*(190*n^4-1170*n^3+2519*n^2-2229*n+666)*a(n-2) - 2*(n-3)*(2*n-3)*(19*n^2-41*n+18)*a(n-3) )/(3*n*(n-1)*(19*n^2-79*n+78)) fi; end:
    seq(a(n), n = 0..30);
  • Mathematica
    a[n_]:=SeriesCoefficient[((1 - x)/(1 - x + x^2))^n,{x,0,n}]; Array[a,32,0] (* Stefano Spezia, Jul 29 2025 *)
  • PARI
    a(n) = my(x='x+O('x^(n+1))); polcoef(((1 - x)/(1 - x + x^2))^n, n); \\ Michel Marcus, Aug 03 2025

Formula

a(n) = Sum_{k = 0..floor(n/2)} binomial(-n, k)*binomial(n-k-1, n-2*k) = Sum_{k = 0
..floor(n/2)} (-1)^k*binomial(n+k-1, k)*binomial(n-k-1, n-2*k). Cf. A246437.
a(n) = -n*hypergeom([n+1, 1 - (1/2)*n, 3/2 - (1/2)*n], [2, 2 - n], 4) for n >= 3.
P-recursive: 3*n*(n - 1)*(19*n^2 - 79*n + 78)*a(n) = 2*(n - 1)*(2*n - 3)*(19*n^2 - 60*n + 36)*a(n-1) - 2*(190*n^4 - 1170*n^3 + 2519*n^2 - 2229*n + 666)*a(n-2) - 2*(n - 3)*(2*n - 3)*(19*n^2 - 41*n + 18)*a(n-3) with a(0) = 1, a(1) = 0 and a(2) = -2.
exp( Sum_{n >= 1} a(n)*(-x)^n/n ) = 1 - x^2 + x^3 + 2*x^4 - 6*x^5 - x^6 + ... is the g.f. of A364374.

A104506 Column 1 of triangle A104505, which is equal to the right-hand side of the triangle A084610 of coefficients in (1 + x - x^2)^n.

Original entry on oeis.org

0, -1, -2, 0, 8, 15, -6, -77, -120, 117, 770, 946, -1728, -7735, -6930, 22800, 76960, 42245, -282150, -751640, -125800, 3341205, 7145710, -2002725, -38228232, -65418925, 55550014, 424605078, 566938400, -936604097, -4587287310
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(((1-x)/sqrt(1-2*x+5*x^2+x^2*O(x^n))-1)/(2*x),n)}

Formula

G.f.: ((1-x)/sqrt(1-2*x+5*x^2) - 1)/(2*x).
a(n) = (-1)^n*n*A007440(n) (reversion of g.f. for Fibonacci numbers).
a(n) = -Sum_{k=0..floor(n/2)} C(n, k)*C(n-k, k+1)*(-1)^k. - Paul Barry, May 02 2005
E.g.f.: -exp(x)Bessel_I(1,2*i*x)/i, i=sqrt(-1). - Paul Barry, Feb 10 2006
-(n-1)*(n+1)*a(n) + n*(2*n-1)*a(n-1) - 5*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Aug 17 2017
Showing 1-5 of 5 results.