A159041
Triangle read by rows: row n (n>=0) gives the coefficients of the polynomial p(n,x) of degree n defined in comments.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, -25, -25, 1, 1, -56, 246, -56, 1, 1, -119, 1072, 1072, -119, 1, 1, -246, 4047, -11572, 4047, -246, 1, 1, -501, 14107, -74127, -74127, 14107, -501, 1, 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1, 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1
Offset: 0
Triangle begins as follows:
1;
1, 1;
1, -10, 1;
1, -25, -25, 1;
1, -56, 246, -56, 1;
1, -119, 1072, 1072, -119, 1;
1, -246, 4047, -11572, 4047, -246, 1;
1, -501, 14107, -74127, -74127, 14107, -501, 1;
1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1;
1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1;
Cf.
A007312,
A008292,
A034870,
A060187,
A142458,
A142459,
A159041,
A171692,
A225076,
A225356,
A225398,
A225415,
A225433,
A225434.
-
A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc:
# row n of new triangle T(n,k) in terms of old triangle U(n,k):
p:=proc(n) local k; global U;
simplify( (1/(1-x)) * ( add((-1)^k*U(n+2,k+1)*x^k,k=0..floor(n/2)) + add((-1)^(n+k)*U(n+2,k+1)*x^k, k=ceil((n+2)/2)..n+1 )) );
end;
U:=A008292;
for n from 0 to 6 do lprint(simplify(p(n))); od: # N. J. A. Sloane, May 11 2013
A159041 := proc(n, k)
if k = 0 then
1;
elif k <= floor(n/2) then
A159041(n, k-1)+(-1)^k*A008292(n+2, k+1) ;
else
A159041(n, n-k) ;
end if;
end proc: # R. J. Mathar, May 08 2013
-
A[n_, 1] := 1;
A[n_, n_] := 1;
A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k];
p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x);
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
Flatten[%]
-
def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
@CachedFunction
def T(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return T(n,k-1) + (-1)^k*A008292(n+2,k+1)
else: return T(n,n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A050393
Reversion of partitions into distinct parts A000009.
Original entry on oeis.org
1, -1, 0, 3, -7, 3, 31, -105, 101, 419, -1971, 2923, 5800, -40388, 81147, 64075, -854408, 2204543, -56096, -18070916, 58866158, -38939227, -371701743, 1544696638, -1870286829, -7166094999, 39743193694, -68677654555
Offset: 1
A066398
Reversion of g.f. (with constant term included) for partition numbers.
Original entry on oeis.org
1, -1, 0, 2, -3, 0, 5, 0, -21, 14, 117, -342, 210, 935, -2565, 1864, 2751, -3945, -8074, 4046, 108927, -333832, 246895, 887040, -2764795, 3062749, -1372098, 4775900, -9367698, -55130625, 299939766, -537241936, -140898285, 2464380030, -4060507784, 193070394
Offset: 0
-
with(numtheory):
Order := 36:
Gser := solve(series(x*exp(add(sigma[1](n)*x^n/n, n = 1..35)), x) = y, x):
seq(coeff(Gser, y^k), k = 1..35); # Peter Bala, Feb 09 2020
-
nmax = 34; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Product[ 1 - x^k*A[x]^k, {k, 1, n}] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
A171805
G.f.: Series reversion of x/P(x)^3 where P(x) is the g.f. for Partition numbers (A000041).
Original entry on oeis.org
1, 3, 18, 130, 1044, 8946, 80135, 741312, 7027515, 67911855, 666525630, 6625647054, 66570488901, 674964968175, 6897258376218, 70961851119848, 734455079297433, 7641851681095236, 79886815507105175, 838655487787502616, 8837797224686207976, 93454820274339167191
Offset: 1
G.f.: A(x) = x + 3*x^2 + 18*x^3 + 130*x^4 + 1044*x^5 + 8946*x^6 +...
where Series_Reversion(A(x)) = x/P(x)^3 = x*eta(x)^3 and
x*eta(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + 13*x^22 +...
-
InverseSeries[x QPochhammer[x]^3 + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
(* Calculation of constants {d,c}: *) eq = FindRoot[{r/QPochhammer[s]^3 == s, 1/s + 3*(s/r)^(1/3)*Derivative[0, 1][QPochhammer][s, s] == (3*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/10}, {s, 1/8}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[r*(-1 + s)*s^2*(Log[s]^2/(6*Pi*(r*(-4*s*ArcTanh[1 - 2*s] + Log[1 - s]*(2 + 3*(-1 + s)*Log[1 - s] + Log[s] - s*Log[s])) - (-1 + s)*(-3*r*QPolyGamma[0, 1, s]^2 + r*QPolyGamma[1, 1, s] + QPolyGamma[0, 1, s]*(r*(2 - 6*Log[1 - s] + Log[s]) + 6*(r/s)^(2/3)*s^2*Log[s]* Derivative[0, 1][QPochhammer][s, s]) + s*Log[s]*((r/s)^(1/3)*s*(6*(r/s)^(1/3) * Log[1 - s] * Derivative[0, 1][QPochhammer][s, s] - 4*s*Log[s] * Derivative[0, 1][QPochhammer][s, s]^2 + (r/s)^(1/3)*s*Log[s]* Derivative[0, 2][QPochhammer][s, s]) - 2*r*Derivative[0, 0, 1][ QPolyGamma][0, 1, s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
-
{a(n)=polcoeff(serreverse(x*eta(x+x*O(x^n))^3),n)}
A291489
Expansion of the series reversion of -1 + Product_{k>=1} (1 + x^k)^k.
Original entry on oeis.org
1, -2, 3, 2, -41, 196, -541, 229, 7235, -48228, 175956, -254933, -1575661, 14909191, -67194669, 153944915, 292516673, -4968647665, 27275432639, -82747735226, 3883854725, 1660136515050, -11302429310683, 42362000190568, -53376259124482, -520085199830413, 4671353423344131
Offset: 1
-
nmax = 27; Rest[CoefficientList[InverseSeries[Series[-1 + Product[(1 + x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], x]]
nmax = 27; Rest[CoefficientList[InverseSeries[Series[-1 + Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x], x]]
A334315
E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} p(k) * A(x)^k / k!, where p = A000041 (partition numbers).
Original entry on oeis.org
1, -2, 9, -65, 653, -8432, 133188, -2488450, 53683569, -1313214351, 35916970957, -1086055854233, 35975402985863, -1295514629022924, 50391598721116365, -2105485003413499952, 94047072252968125326, -4472183077495496587696, 225565085807090517308839
Offset: 1
-
nmax = 19; CoefficientList[InverseSeries[Series[Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}], {x, 0, nmax}], x], x] Range[0, nmax]! // Rest
A291488
Expansion of the series reversion of -1 + Product_{k>=1} 1/(1 - x^k)^k.
Original entry on oeis.org
1, -3, 12, -58, 318, -1896, 11966, -78595, 531486, -3674324, 25845131, -184348434, 1330147092, -9690872427, 71189146313, -526703176813, 3921274277132, -29354616797397, 220824254874928, -1668453804382315, 12655766723174710, -96340024533522759, 735747052686408916, -5635489764030599334
Offset: 1
-
nmax = 24; Rest[CoefficientList[InverseSeries[Series[-1 + Product[1/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], x]]
nmax = 24; Rest[CoefficientList[InverseSeries[Series[-1 + Exp[Sum[DivisorSigma[2, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x], x]]
A291645
Expansion of the series reversion of -1 + Product_{k>=1} (1 + x^(k^2)).
Original entry on oeis.org
1, 0, 0, -1, -1, 0, 4, 9, 4, -23, -78, -78, 132, 694, 1088, -443, -6169, -13452, -4646, 52247, 155891, 143796, -391672, -1715015, -2481013, 2107735, 17836000, 35704800, 3037215, -172386166, -465009936, -338007604, 1487272659, 5624864403, 7125599375, -10208041482
Offset: 1
-
nmax = 36; Rest[CoefficientList[InverseSeries[Series[-1 + Product[1 + x^k^2, {k, 1, nmax}], {x, 0, nmax}], x], x]]
A291646
Expansion of the series reversion of -1 + Product_{k>=1} (1 + x^(2*k-1)).
Original entry on oeis.org
1, 0, -1, -1, 2, 6, -1, -29, -32, 108, 311, -185, -1991, -1590, 9468, 22163, -26645, -170511, -70359, 955734, 1755790, -3561052, -16020532, 309754, 102695477, 141637053, -463468990, -1567907433, 806541136, 11367276801, 10768399120, -59447130815, -155142592628, 172852194214, 1273466836673
Offset: 1
-
nmax = 35; Rest[CoefficientList[InverseSeries[Series[-1 + Product[1 + x^(2 k - 1), {k, 1, nmax}], {x, 0, nmax}], x], x]]
nmax = 35; Rest[CoefficientList[InverseSeries[Series[-1 + QPochhammer[x^2]^2/(QPochhammer[x] QPochhammer[x^4]), {x, 0, nmax}], x], x]]
A291695
Expansion of the series reversion of Sum_{i>=1} x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).
Original entry on oeis.org
1, -3, 12, -57, 304, -1757, 10746, -68450, 449274, -3016645, 20618317, -142946735, 1002722249, -7103064540, 50738237140, -365049115546, 2642981328372, -19241453032254, 140770867457795, -1034409857616986, 7631075823632553, -56497364856268721, 419641611512419630, -3126180409889288924
Offset: 1
-
nmax = 24; Rest[CoefficientList[InverseSeries[Series[Sum[x^i/(1 - x^i), {i, 1, nmax}] / Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x], x]]
nmax = 24; Rest[CoefficientList[InverseSeries[Series[(Log[1-x] + QPolyGamma[0, 1, x]) / (Log[x]*QPochhammer[x]), {x, 0, nmax}], x], x]] (* Vaclav Kotesovec, Apr 21 2020 *)
Showing 1-10 of 10 results.
Comments