A171692
Triangle read by rows: absolute values of odd-numbered rows of A159041.
Original entry on oeis.org
1, 1, 10, 1, 1, 56, 246, 56, 1, 1, 246, 4047, 11572, 4047, 246, 1, 1, 1012, 46828, 408364, 901990, 408364, 46828, 1012, 1, 1, 4082, 474189, 9713496, 56604978, 105907308, 56604978, 9713496, 474189, 4082, 1, 1, 16368, 4520946, 193889840, 2377852335, 10465410528, 17505765564, 10465410528, 2377852335, 193889840, 4520946, 16368, 1
Offset: 0
Irregular triangle begins as:
1;
1, 10, 1;
1, 56, 246, 56, 1;
1, 246, 4047, 11572, 4047, 246, 1;
1, 1012, 46828, 408364, 901990, 408364, 46828, 1012, 1;
-
(* First program *)
f[x_, y_, m_]:= 2^(m+1)*Exp[2^m*x]/((1 -y*Exp[x])*(1 +(2^(m+1) -1)*Exp[2^m*x]));
Table[CoefficientList[SeriesCoefficient[Series[((1-y)^(n+1)/(2*y))*n!*f[x, y, 0], {x,0,30}], n], y], {n, 2, 20, 2}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
(* Second program *)
A008292[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j,0,k}];
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], T[n, k-1] + (-1)^k*A008292[n+2, k+1], T[n, n-k] ]]; (* T = A159041 *)
A171692[n_, k_]:= Abs[T[2*n, k]];
Table[A171692[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Mar 18 2022 *)
-
def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
@CachedFunction
def A159041(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return A159041(n,k-1) + (-1)^k*A008292(n+2,k+1)
else: return A159041(n,n-k)
def A171692(n,k): return abs( A159041(2*n, k) )
flatten([[A171692(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A225434
Apply the triangle-to-triangle transformation described in the Comments in A159041 to the triangle in A142459.
Original entry on oeis.org
1, 1, 1, 1, -58, 1, 1, -307, -307, 1, 1, -1556, 12006, -1556, 1, 1, -7805, 140722, 140722, -7805, 1, 1, -39054, 1461615, -5647300, 1461615, -39054, 1, 1, -195303, 14287093, -109642851, -109642851, 14287093, -195303, 1, 1, -976552, 135028828, -1838120344, 4873361350, -1838120344, 135028828, -976552, 1
Offset: 0
The triangle begins:
1;
1, 1;
1, -58, 1;
1, -307, -307, 1;
1, -1556, 12006, -1556, 1;
1, -7805, 140722, 140722, -7805, 1;
1, -39054, 1461615, -5647300, 1461615, -39054, 1;
1, -195303, 14287093, -109642851, -109642851, 14287093, -195303, 1;
-
See A159041.
-
(* First program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==0 || k==n, 1, (m*(n+1)-m*(k+1)+1)*t[n-1,k-1,m] + (m*(k+1)-(m-1))*t[n-1,k,m] ]; (* t(n,k,4)=A142459 *)
p[x_, n_]:= p[x, n]= Sum[x^i*If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<=Floor[n/2], (-1)^i*t[n,i,4], (-1)^(n-i+1)*t[n,i,4]]], {i,0,n}]/(1-x);
Flatten[Table[CoefficientList[p[x, n], x], {n,0,12}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*(n+1)-m*(k+1)+1)*t[n-1,k-1,m] + (m*(k+1)-(m-1))*t[n-1,k,m]];
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], T[n, k-1] + (-1)^k*t[n+2,k+1,4], T[n, n-k]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142459(n,k): return T(n,k,4)
@CachedFunction
def A225434(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return A225434(n,k-1) + (-1)^k*A142459(n+2,k+1)
else: return A225434(n,n-k)
flatten([[A225434(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 19 2022
A225483
Triangle T(n, k) = Sum_{j=0..k} (-1)^(k-j)*A159041(2*n+1, j), read by rows.
Original entry on oeis.org
1, 1, -26, 1, 1, -120, 1192, -120, 1, 1, -502, 14609, -88736, 14609, -502, 1, 1, -2036, 152638, -2205524, 9890752, -2205524, 152638, -2036, 1, 1, -8178, 1479727, -45541628, 424761262, -1551163136, 424761262, -45541628, 1479727, -8178, 1
Offset: 0
The triangle begins:
1;
1, -26, 1;
1, -120, 1192, -120, 1;
1, -502, 14609, -88736, 14609, -502, 1;
1, -2036, 152638, -2205524, 9890752, -2205524, 152638, -2036, 1;
-
(* First program *)
Needs["Combinatorica`"];
p[n_, x_]:= p[n,x]= Sum[If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<=Floor[n/2], (-1)^i*Eulerian[n+1, i]*x^i, (-1)^(n-i+1)*Eulerian[n+1, i]*x^i]], {i,0,n}]/(1- x^2);
Table[CoefficientList[p[x, 2*n], x], {n,0,10}]//Flatten
(* Second program *)
A008292[n_, k_]:= A008292[n, k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
f[n_, k_]:= f[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], f[n, k-1] + (-1)^k*A008292[n+2, k+1], f[n, n-k]]]; (* f = A159041 *)
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*f[2*n+1,j], {j,0,k}];
Table[T[n, k], {n,0,10}, {k,0,2*n}]//Flatten (* G. C. Greubel, Mar 29 2022 *)
-
def A008292(n, k): return sum( (-1)^j*(k-j)^n*binomial(n+1, j) for j in (0..k) )
@CachedFunction
def f(n, k): # A159041
if (k==0 or k==n): return 1
elif (k <= (n//2)): return f(n, k-1) + (-1)^k*A008292(n+2, k+1)
else: return f(n, n-k)
def A225483(n,k): return sum( (-1)^(k-j)*f(2*n+1,j) for j in (0..k) )
flatten([[A225483(n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 29 2022
A225356
Triangle T(n, k) = T(n, k-1) + (-1)^k*A060187(n+2,k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -22, 1, 1, -75, -75, 1, 1, -236, 1446, -236, 1, 1, -721, 9822, 9822, -721, 1, 1, -2178, 58479, -201244, 58479, -2178, 1, 1, -6551, 325061, -2160227, -2160227, 325061, -6551, 1, 1, -19672, 1736668, -19971304, 49441990, -19971304, 1736668, -19672, 1
Offset: 0
The triangle begins:
1;
1, 1;
1, -22, 1;
1, -75, -75, 1;
1, -236, 1446, -236, 1;
1, -721, 9822, 9822, -721, 1;
1, -2178, 58479, -201244, 58479, -2178, 1;
1, -6551, 325061, -2160227, -2160227, 325061, -6551, 1;
1, -19672, 1736668, -19971304, 49441990, -19971304, 1736668, -19672, 1;
-
(* First program *)
q[x_, n_]= (1-x)^(n+1)*Sum[(2*m+1)^n*x^m, {m, 0, Infinity}];
t[n_, m_]:= t[n, m]= Table[CoefficientList[q[x, k], x], {k,0,15}][[n+1, m+1]];
p[x_, n_]:= p[x, n]= Sum[x^i*If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i <= Floor[n/2], (-1)^i*t[n, i], (-1)^(n-i+1)*t[n, i]]], {i,0,n}]/(1-x);
Flatten[Table[CoefficientList[p[x, n], x], {n,10}]]
(* Second Program *)
A060187[n_, k_]:= Sum[(-1)^(k-i)*Binomial[n, k-i]*(2*i-1)^(n-1), {i,k}];
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], T[n, k-1] +(-1)^k*A060187[n+2, k+1], T[n, n-k] ]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2022 *)
-
def A060187(n,k): return sum( (-1)^(k-j)*(2*j-1)^(n-1)*binomial(n, k-j) for j in (1..k) )
@CachedFunction
def A225356(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return A225356(n,k-1) + (-1)^k*A060187(n+2,k+1)
else: return A225356(n,n-k)
flatten([[A225356(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A171693
Expansion of g.f.: 2^(1+floor(n/2))*n!*((1-y)^(n+1)/(1+y))*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 0.
Original entry on oeis.org
1, -1, 14, -1, 4, -16, 504, -16, 4, -34, 372, 2178, 35288, 2178, 372, -34, 496, -5888, 65728, 749824, 4185760, 749824, 65728, -5888, 496, -11056, 154912, -767856, 23350656, 230640288, 770603712, 230640288, 23350656, -767856, 154912, -11056
Offset: 0
Irregular triangle begins as:
1;
-1, 14, -1;
4, -16, 504, -16, 4;
-34, 372, 2178, 35288, 2178, 372, -34;
496, -5888, 65728, 749824, 4185760, 749824, 65728, -5888, 496;
-
m= 0;
f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t]));
T[n_]:= T[n]= CoefficientList[2^(1+Floor[n/2])*n!*(1-y)^(n+1)/(1 + y)*SeriesCoefficient[Series[f[t, y, m], {t,0,20}], n], y];
Table[T[2*n+1], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 30 2022 *)
A171694
Expansion of g.f.: 4^n*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = -2.
Original entry on oeis.org
1, 2, 2, 6, 20, 6, 26, 154, 190, 14, 150, 1160, 3428, 1352, 54, 1082, 9174, 50404, 51724, 10434, 62, 9366, 78476, 683962, 1376232, 734122, 65996, 966, 94586, 735410, 9096210, 30488714, 32703374, 8931318, 530534, -4786, 1091670, 7562000, 122859048, 611454960, 1132022084, 653476464, 111158184, 2715536, 71574
Offset: 0
Triangle begins as:
1;
2, 2;
6, 20, 6;
26, 154, 190, 14;
150, 1160, 3428, 1352, 54;
1082, 9174, 50404, 51724, 10434, 62;
9366, 78476, 683962, 1376232, 734122, 65996, 966;
94586, 735410, 9096210, 30488714, 32703374, 8931318, 530534, -4786;
-
m= -2;
f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t]));
Table[CoefficientList[4^n*n!*(1-y)^(n+1)*SeriesCoefficient[Series[f[t,y,m], {t,0,20}], n], y], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
A225433
Triangle T(n, k) = T(n, k-1) + (-1)^k*A142458(n+2, k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -38, 1, 1, -165, -165, 1, 1, -676, 4806, -676, 1, 1, -2723, 44452, 44452, -2723, 1, 1, -10914, 362895, -1346780, 362895, -10914, 1, 1, -43681, 2780367, -20297327, -20297327, 2780367, -43681, 1, 1, -174752, 20554588, -263879264, 683233990, -263879264, 20554588, -174752, 1
Offset: 0
The triangle begins:
1;
1, 1;
1, -38, 1;
1, -165, -165, 1;
1, -676, 4806, -676, 1;
1, -2723, 44452, 44452, -2723, 1;
1, -10914, 362895, -1346780, 362895, -10914, 1;
1, -43681, 2780367, -20297327, -20297327, 2780367, -43681, 1;
-
See Maple program in A159041.
-
(* First program *)
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n+1) -m*(k+1) +1)*T[n-1, k- 1, m] + (m*(k+1) -(m-1))*T[n-1, k, m] ];
p[x_, n_]:= p[x, n]= Sum[x^i*If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<= Floor[n/2], (-1)^i*T[n,i,3], -(-1)^(n-i)*T[n,i,3]]], {i,0,n}]/(1-x);
Flatten[Table[CoefficientList[p[x, n], x], {n,0,12}]]
(* Second program *)
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A142458[n_, k_]:= T[n,k,3];
A225433[n_, k_]:= A225433[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], A225433[n, k-1] +(-1)^k*A142458[n+2, k+1], A225433[n, n-k]]];
Table[A225433[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142458(n,k): return T(n,k,3)
@CachedFunction
def A225433(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return A225433(n,k-1) + (-1)^k*A142458(n+2,k+1)
else: return A225433(n,n-k)
flatten([[A225433(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 19 2022
A171695
Expansion of g.f.: 2^(floor((n+1)/2))*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 1.
Original entry on oeis.org
1, 1, 1, -1, 6, -1, -1, 7, 25, -7, 10, -44, 152, -20, -2, -26, 198, -292, 1628, -642, 94, -154, 1000, -1954, 6416, 1586, -1400, 266, 1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378, 1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128
Offset: 0
Triangle begins as:
1;
1, 1;
-1, 6, -1;
-1, 7, 25, -7;
10, -44, 152, -20, -2;
-26, 198, -292, 1628, -642, 94;
-154, 1000, -1954, 6416, 1586, -1400, 266;
1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378;
1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128;
-
m= 1;
f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t]));
Table[CoefficientList[2^(Floor[(n+1)/2])*n!*(1-y)^(n+1)*SeriesCoefficient[ Series[f[t,y,m], {t,0,20}], n], y], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
A225532
Triangle T(n, k) = abs(A225483(n/2, k)) if (n mod 2 = 0), otherwise abs(A225482((n-1)/2, k) - A225483((n-1)/2, k-1)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 26, 1, 1, 27, 27, 1, 1, 120, 1192, 120, 1, 1, 121, 1312, 1312, 121, 1, 1, 502, 14609, 88736, 14609, 502, 1, 1, 503, 15111, 103345, 103345, 15111, 503, 1, 1, 2036, 152638, 2205524, 9890752, 2205524, 152638, 2036, 1, 1, 2037, 154674, 2358162, 12096276, 12096276, 2358162, 154674, 2037, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 26, 1;
1, 27, 27, 1;
1, 120, 1192, 120, 1;
1, 121, 1312, 1312, 121, 1;
1, 502, 14609, 88736, 14609, 502, 1;
1, 503, 15111, 103345, 103345, 15111, 503, 1;
-
(* First program *)
Needs["Combinatorica`"];
p[n_, x_]:= p[n,x]= Sum[If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<=Floor[n/2], (-1)^i*Eulerian[n+1,i]*x^i, (-1)^(n-i+1)*Eulerian[n+1,i]*x^i]], {i,0,n}]/(1 - x^2);
q[n_, x_]= If[Mod[n,2]==0, (1-x)*p[n/2,x], p[(n+1)/2,x]];
Table[Abs[CoefficientList[q[(4*n +(-1)^n +5)/2, x], x]], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
(* Second program *)
A008292[n_, k_]:= A008292[n, k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
f[n_, k_]:= f[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], f[n,k-1] + (-1)^k*A008292[n+2,k+1], f[n,n-k]]]; (* f=A159041 *)
A225483[n_, k_]:= Sum[(-1)^(k-j)*f[2*n+1,j], {j,0,k}];
T[n_, k_]:= If[Mod[n,2]==0, A225483[n/2, k], A225483[(n-1)/2, k] - A225483[(n - 1)/2, k-1] ]//Abs;
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 29 2022 *)
-
def A008292(n, k): return sum( (-1)^j*(k-j)^n*binomial(n+1, j) for j in (0..k) )
@CachedFunction
def f(n, k): # A159041
if (k==0 or k==n): return 1
elif (k <= (n//2)): return f(n, k-1) + (-1)^k*A008292(n+2, k+1)
else: return f(n, n-k)
def A225483(n,k): return sum( (-1)^(k-j)*f(2*n+1,j) for j in (0..k) )
@CachedFunction
def A225532(n,k):
if (n%2==0): return abs(A225483(n/2, k))
else: return abs( A225483((n-1)/2, k) - A225483((n-1)/2, k-1) )
flatten([[A225532(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 29 2022
A347816
Prime numbers p such that both 15 and 85 are quadratic nonresidue (mod p).
Original entry on oeis.org
13, 29, 31, 41, 47, 79, 83, 139, 157, 199, 211, 263, 269, 373, 379, 383, 401, 433, 439, 443, 449, 457, 467, 499, 521, 563, 571, 577, 587, 613, 619, 641, 647, 691, 733, 751, 757, 809, 811, 821, 863, 881, 929, 937, 941, 991, 1033, 1049, 1051, 1061
Offset: 1
-
alias(ls = NumberTheory:-LegendreSymbol):
isA347816 := k -> isprime(k) and ls(15, k) = -1 and ls(85, k) = -1:
A347816List := upto -> select(isA347816, [`$`(3..upto)]):
A347816List(1061); # Peter Luschny, Sep 16 2021
-
Select[Prime@Range[180], JacobiSymbol[15, #] == -1 && JacobiSymbol[85,#]==-1 &] (* Stefano Spezia, Sep 16 2021 *)
-
isok(p) = isprime(p) && (kronecker(15,p)==-1) && (kronecker(85,p)==-1); \\ Michel Marcus, Sep 16 2021
-
from sympy.ntheory import legendre_symbol, primerange
A347816_list = [p for p in primerange(3,10**5) if legendre_symbol(15,p) == legendre_symbol(85,p) == -1] # Chai Wah Wu, Sep 16 2021
Showing 1-10 of 10 results.
Comments