A225398
Triangle read by rows: absolute values of odd-numbered rows of A225433.
Original entry on oeis.org
1, 1, 38, 1, 1, 676, 4806, 676, 1, 1, 10914, 362895, 1346780, 362895, 10914, 1, 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1, 1, 2796190, 1063096365, 35677598760, 267248150610, 554291429748, 267248150610, 35677598760, 1063096365, 2796190, 1
Offset: 1
Triangle begins:
1;
1, 38, 1;
1, 676, 4806, 676, 1;
1, 10914, 362895, 1346780, 362895, 10914, 1;
1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1;
-
(* First program *)
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-(m- 1))*t[n-1,k,m]];
T[n_, k_]:= T[n, k]= t[n+1, k+1, 3]; (* t(n,k,3) = A142458 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n, 1, 14, 2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m +1)*t[n-1,k,m]]; (* t(n,k,3) = A142458 *)
A225398[n_, k_]:= A225398[n, k]= Sum[(-1)^(k-j-1)*t[2*n,j+1,3], {j,0,k-1}];
Table[A225398[n, k], {n,12}, {k,2*n-1}] //Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142458(n, k): return T(n, k, 3)
def A225398(n,k): return sum( (-1)^(k-j-1)*A142458(2*n, j+1) for j in (0..k-1) )
flatten([[A225398(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
A159041
Triangle read by rows: row n (n>=0) gives the coefficients of the polynomial p(n,x) of degree n defined in comments.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, -25, -25, 1, 1, -56, 246, -56, 1, 1, -119, 1072, 1072, -119, 1, 1, -246, 4047, -11572, 4047, -246, 1, 1, -501, 14107, -74127, -74127, 14107, -501, 1, 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1, 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1
Offset: 0
Triangle begins as follows:
1;
1, 1;
1, -10, 1;
1, -25, -25, 1;
1, -56, 246, -56, 1;
1, -119, 1072, 1072, -119, 1;
1, -246, 4047, -11572, 4047, -246, 1;
1, -501, 14107, -74127, -74127, 14107, -501, 1;
1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1;
1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1;
Cf.
A007312,
A008292,
A034870,
A060187,
A142458,
A142459,
A159041,
A171692,
A225076,
A225356,
A225398,
A225415,
A225433,
A225434.
-
A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc:
# row n of new triangle T(n,k) in terms of old triangle U(n,k):
p:=proc(n) local k; global U;
simplify( (1/(1-x)) * ( add((-1)^k*U(n+2,k+1)*x^k,k=0..floor(n/2)) + add((-1)^(n+k)*U(n+2,k+1)*x^k, k=ceil((n+2)/2)..n+1 )) );
end;
U:=A008292;
for n from 0 to 6 do lprint(simplify(p(n))); od: # N. J. A. Sloane, May 11 2013
A159041 := proc(n, k)
if k = 0 then
1;
elif k <= floor(n/2) then
A159041(n, k-1)+(-1)^k*A008292(n+2, k+1) ;
else
A159041(n, n-k) ;
end if;
end proc: # R. J. Mathar, May 08 2013
-
A[n_, 1] := 1;
A[n_, n_] := 1;
A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k];
p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x);
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
Flatten[%]
-
def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
@CachedFunction
def T(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return T(n,k-1) + (-1)^k*A008292(n+2,k+1)
else: return T(n,n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
Showing 1-2 of 2 results.
Comments