cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159041 Triangle read by rows: row n (n>=0) gives the coefficients of the polynomial p(n,x) of degree n defined in comments.

Original entry on oeis.org

1, 1, 1, 1, -10, 1, 1, -25, -25, 1, 1, -56, 246, -56, 1, 1, -119, 1072, 1072, -119, 1, 1, -246, 4047, -11572, 4047, -246, 1, 1, -501, 14107, -74127, -74127, 14107, -501, 1, 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1, 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 03 2009

Keywords

Comments

Let E(n,k) (1 <= k <= n) denote the Eulerian numbers as defined in A008292. Then we define polynomials p(n,x) for n >= 0 as follows.
p(n,x) = (1/(1-x)) * ( Sum_{k=0..floor(n/2)} (-1)^k*E(n+2,k+1)*x^k + Sum_{k=ceiling((n+2)/2)..n+1} (-1)^(n+k)*E(n+2,k+1)*x^k ).
For example,
p(0,x) = (1-x)/(1-x) = 1,
p(1,x) = (1-x^2)/(1-x) = 1 + x,
p(2,x) = (1 - 11*x + 11*x^2 - x^3)/(1-x) = 1 - 10*x + x^2,
p(3,x) = (1 - 26*x + 26*x^3 - x^4)/(1-x) = 1 - 25*x - 25*x^2 + x^3,
p(4,x) = (1 - 57*x + 302*x^2 - 302*x^3 + 57*x^3 + x^5)/(1-x)
= 1 - 56*x + 246*x^2 - 56*x^3 + x^4.
More generally, there is a triangle-to-triangle transformation U -> T defined as follows.
Let U(n,k) (1 <= k <= n) be a triangle of nonnegative numbers in which the rows are symmetric about the middle. Define polynomials p(n,x) for n >= 0 by
p(n,x) = (1/(1-x)) * ( Sum_{k=0..floor(n/2)} (-1)^k*U(n+2,k+1)*x^k + Sum_{k=ceiling((n+2)/2)..n+1} (-1)^(n+k)*U(n+2,k+1)*x^k ).
The n-th row of the new triangle T(n,k) (0 <= k <= n) gives the coefficients in the expansion of p(n+2).
The new triangle may be defined recursively by: T(n,0)=1; T(n,k) = T(n,k-1) + (-1)^k*U(n+2,k) for 1 <= k <= floor(n/2); T(n,k) = T(n,n-k).
Note that the central terms in the odd-numbered rows of U(n,k) do not get used.
The following table lists various sequences constructed using this transform:
Parameter Triangle Triangle Odd-numbered
m U T rows

Examples

			Triangle begins as follows:
  1;
  1,     1;
  1,   -10,      1;
  1,   -25,    -25,        1;
  1,   -56,    246,      -56,       1;
  1,  -119,   1072,     1072,    -119,       1;
  1,  -246,   4047,   -11572,    4047,    -246,        1;
  1,  -501,  14107,   -74127,  -74127,   14107,     -501,      1;
  1, -1012,  46828,  -408364,  901990, -408364,    46828,  -1012,     1;
  1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1;
		

Crossrefs

Programs

  • Maple
    A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc:
    # row n of new triangle T(n,k) in terms of old triangle U(n,k):
    p:=proc(n) local k; global U;
    simplify( (1/(1-x)) * ( add((-1)^k*U(n+2,k+1)*x^k,k=0..floor(n/2)) + add((-1)^(n+k)*U(n+2,k+1)*x^k, k=ceil((n+2)/2)..n+1 )) );
    end;
    U:=A008292;
    for n from 0 to 6 do lprint(simplify(p(n))); od: # N. J. A. Sloane, May 11 2013
    A159041 := proc(n, k)
        if k = 0 then
            1;
        elif k <= floor(n/2) then
            A159041(n, k-1)+(-1)^k*A008292(n+2, k+1) ;
        else
            A159041(n, n-k) ;
        end if;
    end proc: # R. J. Mathar, May 08 2013
  • Mathematica
    A[n_, 1] := 1;
    A[n_, n_] := 1;
    A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k];
    p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x);
    Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
    Flatten[%]
  • Sage
    def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
    @CachedFunction
    def T(n,k):
        if (k==0 or k==n): return 1
        elif (k <= (n//2)): return T(n,k-1) + (-1)^k*A008292(n+2,k+1)
        else: return T(n,n-k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, k) = T(n, k-1) + (-1)^k*A008292(n+2, k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1. - R. J. Mathar, May 08 2013

Extensions

Edited by N. J. A. Sloane, May 07 2013, May 11 2013

A225076 Triangle read by rows: absolute values of odd-numbered rows of A225356.

Original entry on oeis.org

1, 1, 22, 1, 1, 236, 1446, 236, 1, 1, 2178, 58479, 201244, 58479, 2178, 1, 1, 19672, 1736668, 19971304, 49441990, 19971304, 1736668, 19672, 1, 1, 177134, 46525293, 1356555432, 9480267666, 19107752148, 9480267666, 1356555432, 46525293, 177134, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 26 2013

Keywords

Comments

An equivalent definition: take the polynomials corresponding to rows 2, 4, 6, 8, ... of A060187, divide by x+1, and extract the coefficients. [Corrected by Petros Hadjicostas, Apr 17 2020]

Examples

			Triangle T(n,m) (for n >= 1 and 0 <= m <= 2*n - 2) begins as follows:
  1;
  1,    22,       1;
  1,   236,    1446,      236,        1;
  1,  2178,   58479,   201244,    58479,     2178,       1;
  1, 19672, 1736668, 19971304, 49441990, 19971304, 1736668, 19672, 1;
  ...
		

Crossrefs

Cf. A002671 (row sums), A034870, A060187, A171692, A225398.

Programs

  • Mathematica
    (* Power series via an infinite sum *)
    p[x_,n_] = (x-1)^(2*n)*Sum[(2*k+1)^(2*n-1)*x^k,{k,0,Infinity}];
    Table[CoefficientList[p[x,n]/(1+x),x],{n,1,10}]//Flatten
    (* First alternative method: recurrence *)
    t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k - (m-1))*t[n-1,k,m]];
    T[n_, k_]:= T[n, k]= t[n+1,k+1,2]; (* t(n,k,2) = A060187 *)
    Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(x+1), x], {n,14,2}]]
    (* Second alternative method: polynomial expansion *)
    p[t_] = Exp[t]*x/(-Exp[2*t] + x);
    Flatten[Table[CoefficientList[(n!*(-1+x)^(n+1)/(x*(x+1)))*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 1, 13, 2}]]
  • Sage
    def A060187(n, k): return sum( (-1)^(k-j)*(2*j-1)^(n-1)*binomial(n, k-j) for j in (1..k) )
    def A225076(n,k): return sum( (-1)^(k-j-1)*A060187(2*n, j+1) for j in (0..k-1) )
    flatten([[A225076(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022

Formula

Triangle read by rows: row n gives coefficients in the expansion of the polynomial ((x - 1)^(2*n)/(x + 1)) * Sum_{k >= 0} (2*k + 1)^(2*n-1)*x^k. The infinite sum simplifies to a polynomial.
Sum_{m=0..2*n-2} T(n,m)*t^m = 2^(2*n-1) * (1-t)^(2*n) * LerchPhi(t, 1-2*n, 1/2)/(1 + t).
Sum_{k=1..n} T(n, k) = A002671(n-1).
T(n,m) = Sum_{k=0..m-1} (-1)^(m-k-1)*A060187(2*n,k+1) for n >= 1 and 1 <= m <= 2*n-1. - Petros Hadjicostas, Apr 17 2020

Extensions

Edited by N. J. A. Sloane, May 06 2013, May 11 2013

A225415 Triangle read by rows: absolute values of odd-numbered rows of A225434.

Original entry on oeis.org

1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
Offset: 1

Views

Author

Roger L. Bagula, May 07 2013

Keywords

Examples

			Triangle begins:
  1;
  1,     58,         1;
  1,   1556,     12006,       1556,          1;
  1,  39054,   1461615,    5647300,    1461615,      39054,         1;
  1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
		

Crossrefs

The m=4 triangle in the sequence A034870 (m=0), A171692 (m=1), A225076 (m=2), A225398 (m=3).

Programs

  • Mathematica
    (* First program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
    T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *)
    Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]]
    (* Second program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *)
    T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}];
    Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
  • Sage
    @CachedFunction
    def T(n, k, m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
    def A142459(n, k): return T(n, k, 4)
    def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) )
    flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022

Formula

T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142459(2*n, j+1). - G. C. Greubel, Mar 19 2022

Extensions

Edited by N. J. A. Sloane, May 11 2013
Showing 1-3 of 3 results.