cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002671 a(n) = 4^n*(2*n+1)!.

Original entry on oeis.org

1, 24, 1920, 322560, 92897280, 40874803200, 25505877196800, 21424936845312000, 23310331287699456000, 31888533201572855808000, 53572735778642397757440000, 108431217215972213061058560000
Offset: 0

Views

Author

Keywords

Comments

From Sanjar Abrarov, Mar 30 2019: (Start)
There is a formula for numerical integration (see MATLAB Central file ID# 71037):
Integral_{x=0..1} f(x) dx = 2*Sum_{m=1..M} Sum_{n>=0} 1/((2*M)^(2*n + 1)*(2*n + 1)!)*f^(2*n)(x)|_x = (m - 1/2)/M, where the notation f^(2*n)(x)|_x = (m - 1/2)/M is the (2*n)-th derivative of the function f(x) at the points x = (m - 1/2)/M.
When we choose M = 1, then the corresponding coefficients are generated as 2*1/(2^(2*n + 1)*(2*n + 1)!) = 1/(4^n*(2*n + 1)!).
Therefore, this sequence also occurs in the denominator of the numerical integration formula at M = 1. (End)
From Peter Bala, Oct 03 2019: (Start)
Denominators in the expansion of 2*sinh(x/2) = x + x^3/24 + x^5/1920 + x^7/322560 + ....
If f(x) is a polynomial in x then the central difference f(x+1/2) - f(x-1/2) = 2*sinh(D/2)(f(x)) = D(f(x)) + (1/24)*D^3(f(x)) + (1/1920)*D^5(f(x)) + ..., where D denotes the differential operator d/dx. Formulas for higher central differences in terms of powers of the operator D can be obtained from the expansion of powers of the function 2*sinh(x/2). For example, the expansion (2*sinh(x/2))^2 = x^2 + (1/12)*x^4 + (1/360)*x^6 + .. leads to the second central difference formula f(x+1) - 2*f(x) + f(x-1) = D^2(f(x)) + (1/12)*D^4(f(x)) + (1/360)* D^6(f(x)) + .... See A002674. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A bisection of A002866 and (apart from initial term) also a bisection of A007346.
Row sums of A225076. - Roger L. Bagula, Apr 27 2013

Programs

  • Mathematica
    a[n_] := 4^n*(2*n + 1)!; Array[a, 12, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    a(n)=4^n*(2*n+1)!

Formula

a(n) = 16^n * Pochhammer(1,n) * Pochhammer(3/2,n). - Roger L. Bagula, Apr 26 2013
From Amiram Eldar, Apr 09 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*sinh(1/2).
Sum_{n>=0} (-1)^n/a(n) = 2*sin(1/2). (End)

Extensions

More terms from Michael Somos

A159041 Triangle read by rows: row n (n>=0) gives the coefficients of the polynomial p(n,x) of degree n defined in comments.

Original entry on oeis.org

1, 1, 1, 1, -10, 1, 1, -25, -25, 1, 1, -56, 246, -56, 1, 1, -119, 1072, 1072, -119, 1, 1, -246, 4047, -11572, 4047, -246, 1, 1, -501, 14107, -74127, -74127, 14107, -501, 1, 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1, 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 03 2009

Keywords

Comments

Let E(n,k) (1 <= k <= n) denote the Eulerian numbers as defined in A008292. Then we define polynomials p(n,x) for n >= 0 as follows.
p(n,x) = (1/(1-x)) * ( Sum_{k=0..floor(n/2)} (-1)^k*E(n+2,k+1)*x^k + Sum_{k=ceiling((n+2)/2)..n+1} (-1)^(n+k)*E(n+2,k+1)*x^k ).
For example,
p(0,x) = (1-x)/(1-x) = 1,
p(1,x) = (1-x^2)/(1-x) = 1 + x,
p(2,x) = (1 - 11*x + 11*x^2 - x^3)/(1-x) = 1 - 10*x + x^2,
p(3,x) = (1 - 26*x + 26*x^3 - x^4)/(1-x) = 1 - 25*x - 25*x^2 + x^3,
p(4,x) = (1 - 57*x + 302*x^2 - 302*x^3 + 57*x^3 + x^5)/(1-x)
= 1 - 56*x + 246*x^2 - 56*x^3 + x^4.
More generally, there is a triangle-to-triangle transformation U -> T defined as follows.
Let U(n,k) (1 <= k <= n) be a triangle of nonnegative numbers in which the rows are symmetric about the middle. Define polynomials p(n,x) for n >= 0 by
p(n,x) = (1/(1-x)) * ( Sum_{k=0..floor(n/2)} (-1)^k*U(n+2,k+1)*x^k + Sum_{k=ceiling((n+2)/2)..n+1} (-1)^(n+k)*U(n+2,k+1)*x^k ).
The n-th row of the new triangle T(n,k) (0 <= k <= n) gives the coefficients in the expansion of p(n+2).
The new triangle may be defined recursively by: T(n,0)=1; T(n,k) = T(n,k-1) + (-1)^k*U(n+2,k) for 1 <= k <= floor(n/2); T(n,k) = T(n,n-k).
Note that the central terms in the odd-numbered rows of U(n,k) do not get used.
The following table lists various sequences constructed using this transform:
Parameter Triangle Triangle Odd-numbered
m U T rows

Examples

			Triangle begins as follows:
  1;
  1,     1;
  1,   -10,      1;
  1,   -25,    -25,        1;
  1,   -56,    246,      -56,       1;
  1,  -119,   1072,     1072,    -119,       1;
  1,  -246,   4047,   -11572,    4047,    -246,        1;
  1,  -501,  14107,   -74127,  -74127,   14107,     -501,      1;
  1, -1012,  46828,  -408364,  901990, -408364,    46828,  -1012,     1;
  1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1;
		

Crossrefs

Programs

  • Maple
    A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc:
    # row n of new triangle T(n,k) in terms of old triangle U(n,k):
    p:=proc(n) local k; global U;
    simplify( (1/(1-x)) * ( add((-1)^k*U(n+2,k+1)*x^k,k=0..floor(n/2)) + add((-1)^(n+k)*U(n+2,k+1)*x^k, k=ceil((n+2)/2)..n+1 )) );
    end;
    U:=A008292;
    for n from 0 to 6 do lprint(simplify(p(n))); od: # N. J. A. Sloane, May 11 2013
    A159041 := proc(n, k)
        if k = 0 then
            1;
        elif k <= floor(n/2) then
            A159041(n, k-1)+(-1)^k*A008292(n+2, k+1) ;
        else
            A159041(n, n-k) ;
        end if;
    end proc: # R. J. Mathar, May 08 2013
  • Mathematica
    A[n_, 1] := 1;
    A[n_, n_] := 1;
    A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k];
    p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x);
    Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
    Flatten[%]
  • Sage
    def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
    @CachedFunction
    def T(n,k):
        if (k==0 or k==n): return 1
        elif (k <= (n//2)): return T(n,k-1) + (-1)^k*A008292(n+2,k+1)
        else: return T(n,n-k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, k) = T(n, k-1) + (-1)^k*A008292(n+2, k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1. - R. J. Mathar, May 08 2013

Extensions

Edited by N. J. A. Sloane, May 07 2013, May 11 2013

A225398 Triangle read by rows: absolute values of odd-numbered rows of A225433.

Original entry on oeis.org

1, 1, 38, 1, 1, 676, 4806, 676, 1, 1, 10914, 362895, 1346780, 362895, 10914, 1, 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1, 1, 2796190, 1063096365, 35677598760, 267248150610, 554291429748, 267248150610, 35677598760, 1063096365, 2796190, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 26 2013 (Entered by N. J. A. Sloane, May 06 2013)

Keywords

Examples

			Triangle begins:
  1;
  1,     38,        1;
  1,    676,     4806,       676,         1;
  1,  10914,   362895,   1346780,    362895,     10914,        1;
  1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1;
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-(m- 1))*t[n-1,k,m]];
    T[n_, k_]:= T[n, k]= t[n+1, k+1, 3]; (* t(n,k,3) = A142458 *)
    Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n, 1, 14, 2}]]
    (* Second program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m +1)*t[n-1,k,m]]; (* t(n,k,3) = A142458 *)
    A225398[n_, k_]:= A225398[n, k]= Sum[(-1)^(k-j-1)*t[2*n,j+1,3], {j,0,k-1}];
    Table[A225398[n, k], {n,12}, {k,2*n-1}] //Flatten (* G. C. Greubel, Mar 19 2022 *)
  • Sage
    @CachedFunction
    def T(n, k, m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
    def A142458(n, k): return T(n, k, 3)
    def A225398(n,k): return sum( (-1)^(k-j-1)*A142458(2*n, j+1) for j in (0..k-1) )
    flatten([[A225398(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022

Formula

From G. C. Greubel, Mar 19 2022: (Start)
T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142458(2*n, j+1).
T(n, n-k) = T(n, k). (End)

Extensions

Edited by N. J. A. Sloane, May 11 2013

A225415 Triangle read by rows: absolute values of odd-numbered rows of A225434.

Original entry on oeis.org

1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
Offset: 1

Views

Author

Roger L. Bagula, May 07 2013

Keywords

Examples

			Triangle begins:
  1;
  1,     58,         1;
  1,   1556,     12006,       1556,          1;
  1,  39054,   1461615,    5647300,    1461615,      39054,         1;
  1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
		

Crossrefs

The m=4 triangle in the sequence A034870 (m=0), A171692 (m=1), A225076 (m=2), A225398 (m=3).

Programs

  • Mathematica
    (* First program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
    T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *)
    Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]]
    (* Second program *)
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *)
    T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}];
    Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
  • Sage
    @CachedFunction
    def T(n, k, m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
    def A142459(n, k): return T(n, k, 4)
    def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) )
    flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022

Formula

T(n, k) = Sum_{j=0..k-1} (-1)^(k-j-1)*A142459(2*n, j+1). - G. C. Greubel, Mar 19 2022

Extensions

Edited by N. J. A. Sloane, May 11 2013
Showing 1-4 of 4 results.