A002671
a(n) = 4^n*(2*n+1)!.
Original entry on oeis.org
1, 24, 1920, 322560, 92897280, 40874803200, 25505877196800, 21424936845312000, 23310331287699456000, 31888533201572855808000, 53572735778642397757440000, 108431217215972213061058560000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Delbert L. Johnson, Table of n, a(n) for n = 0..201
- S. M. Abrarov and B. M. Quine, Array numerical integration by enhanced midpoint rule, MATLAB Central file ID #: 71037.
- H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables. [Note that there is a mistake in the definition of this sequence on line 2 of page 164.]
- H. E. Salzer, Annotated scanned copy of left side of Table I.
- Eric Weisstein's World of Mathematics, Central Difference.
- Index to divisibility sequences.
A bisection of
A002866 and (apart from initial term) also a bisection of
A007346.
A159041
Triangle read by rows: row n (n>=0) gives the coefficients of the polynomial p(n,x) of degree n defined in comments.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, -25, -25, 1, 1, -56, 246, -56, 1, 1, -119, 1072, 1072, -119, 1, 1, -246, 4047, -11572, 4047, -246, 1, 1, -501, 14107, -74127, -74127, 14107, -501, 1, 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1, 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1
Offset: 0
Triangle begins as follows:
1;
1, 1;
1, -10, 1;
1, -25, -25, 1;
1, -56, 246, -56, 1;
1, -119, 1072, 1072, -119, 1;
1, -246, 4047, -11572, 4047, -246, 1;
1, -501, 14107, -74127, -74127, 14107, -501, 1;
1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1;
1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1;
Cf.
A007312,
A008292,
A034870,
A060187,
A142458,
A142459,
A159041,
A171692,
A225076,
A225356,
A225398,
A225415,
A225433,
A225434.
-
A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc:
# row n of new triangle T(n,k) in terms of old triangle U(n,k):
p:=proc(n) local k; global U;
simplify( (1/(1-x)) * ( add((-1)^k*U(n+2,k+1)*x^k,k=0..floor(n/2)) + add((-1)^(n+k)*U(n+2,k+1)*x^k, k=ceil((n+2)/2)..n+1 )) );
end;
U:=A008292;
for n from 0 to 6 do lprint(simplify(p(n))); od: # N. J. A. Sloane, May 11 2013
A159041 := proc(n, k)
if k = 0 then
1;
elif k <= floor(n/2) then
A159041(n, k-1)+(-1)^k*A008292(n+2, k+1) ;
else
A159041(n, n-k) ;
end if;
end proc: # R. J. Mathar, May 08 2013
-
A[n_, 1] := 1;
A[n_, n_] := 1;
A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k];
p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x);
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
Flatten[%]
-
def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
@CachedFunction
def T(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return T(n,k-1) + (-1)^k*A008292(n+2,k+1)
else: return T(n,n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A225398
Triangle read by rows: absolute values of odd-numbered rows of A225433.
Original entry on oeis.org
1, 1, 38, 1, 1, 676, 4806, 676, 1, 1, 10914, 362895, 1346780, 362895, 10914, 1, 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1, 1, 2796190, 1063096365, 35677598760, 267248150610, 554291429748, 267248150610, 35677598760, 1063096365, 2796190, 1
Offset: 1
Triangle begins:
1;
1, 38, 1;
1, 676, 4806, 676, 1;
1, 10914, 362895, 1346780, 362895, 10914, 1;
1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1;
-
(* First program *)
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-(m- 1))*t[n-1,k,m]];
T[n_, k_]:= T[n, k]= t[n+1, k+1, 3]; (* t(n,k,3) = A142458 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n, 1, 14, 2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m +1)*t[n-1,k,m]]; (* t(n,k,3) = A142458 *)
A225398[n_, k_]:= A225398[n, k]= Sum[(-1)^(k-j-1)*t[2*n,j+1,3], {j,0,k-1}];
Table[A225398[n, k], {n,12}, {k,2*n-1}] //Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142458(n, k): return T(n, k, 3)
def A225398(n,k): return sum( (-1)^(k-j-1)*A142458(2*n, j+1) for j in (0..k-1) )
flatten([[A225398(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
A225415
Triangle read by rows: absolute values of odd-numbered rows of A225434.
Original entry on oeis.org
1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
Offset: 1
Triangle begins:
1;
1, 58, 1;
1, 1556, 12006, 1556, 1;
1, 39054, 1461615, 5647300, 1461615, 39054, 1;
1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
-
(* First program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *)
T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}];
Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142459(n, k): return T(n, k, 4)
def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) )
flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
Showing 1-4 of 4 results.
Comments