A159041
Triangle read by rows: row n (n>=0) gives the coefficients of the polynomial p(n,x) of degree n defined in comments.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, -25, -25, 1, 1, -56, 246, -56, 1, 1, -119, 1072, 1072, -119, 1, 1, -246, 4047, -11572, 4047, -246, 1, 1, -501, 14107, -74127, -74127, 14107, -501, 1, 1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1, 1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1
Offset: 0
Triangle begins as follows:
1;
1, 1;
1, -10, 1;
1, -25, -25, 1;
1, -56, 246, -56, 1;
1, -119, 1072, 1072, -119, 1;
1, -246, 4047, -11572, 4047, -246, 1;
1, -501, 14107, -74127, -74127, 14107, -501, 1;
1, -1012, 46828, -408364, 901990, -408364, 46828, -1012, 1;
1, -2035, 150602, -2052886, 7685228, 7685228, -2052886, 150602, -2035, 1;
Cf.
A007312,
A008292,
A034870,
A060187,
A142458,
A142459,
A159041,
A171692,
A225076,
A225356,
A225398,
A225415,
A225433,
A225434.
-
A008292 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1) ; end if; end proc:
# row n of new triangle T(n,k) in terms of old triangle U(n,k):
p:=proc(n) local k; global U;
simplify( (1/(1-x)) * ( add((-1)^k*U(n+2,k+1)*x^k,k=0..floor(n/2)) + add((-1)^(n+k)*U(n+2,k+1)*x^k, k=ceil((n+2)/2)..n+1 )) );
end;
U:=A008292;
for n from 0 to 6 do lprint(simplify(p(n))); od: # N. J. A. Sloane, May 11 2013
A159041 := proc(n, k)
if k = 0 then
1;
elif k <= floor(n/2) then
A159041(n, k-1)+(-1)^k*A008292(n+2, k+1) ;
else
A159041(n, n-k) ;
end if;
end proc: # R. J. Mathar, May 08 2013
-
A[n_, 1] := 1;
A[n_, n_] := 1;
A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k];
p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x);
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
Flatten[%]
-
def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
@CachedFunction
def T(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return T(n,k-1) + (-1)^k*A008292(n+2,k+1)
else: return T(n,n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A225076
Triangle read by rows: absolute values of odd-numbered rows of A225356.
Original entry on oeis.org
1, 1, 22, 1, 1, 236, 1446, 236, 1, 1, 2178, 58479, 201244, 58479, 2178, 1, 1, 19672, 1736668, 19971304, 49441990, 19971304, 1736668, 19672, 1, 1, 177134, 46525293, 1356555432, 9480267666, 19107752148, 9480267666, 1356555432, 46525293, 177134, 1
Offset: 1
Triangle T(n,m) (for n >= 1 and 0 <= m <= 2*n - 2) begins as follows:
1;
1, 22, 1;
1, 236, 1446, 236, 1;
1, 2178, 58479, 201244, 58479, 2178, 1;
1, 19672, 1736668, 19971304, 49441990, 19971304, 1736668, 19672, 1;
...
-
(* Power series via an infinite sum *)
p[x_,n_] = (x-1)^(2*n)*Sum[(2*k+1)^(2*n-1)*x^k,{k,0,Infinity}];
Table[CoefficientList[p[x,n]/(1+x),x],{n,1,10}]//Flatten
(* First alternative method: recurrence *)
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k - (m-1))*t[n-1,k,m]];
T[n_, k_]:= T[n, k]= t[n+1,k+1,2]; (* t(n,k,2) = A060187 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(x+1), x], {n,14,2}]]
(* Second alternative method: polynomial expansion *)
p[t_] = Exp[t]*x/(-Exp[2*t] + x);
Flatten[Table[CoefficientList[(n!*(-1+x)^(n+1)/(x*(x+1)))*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 1, 13, 2}]]
-
def A060187(n, k): return sum( (-1)^(k-j)*(2*j-1)^(n-1)*binomial(n, k-j) for j in (1..k) )
def A225076(n,k): return sum( (-1)^(k-j-1)*A060187(2*n, j+1) for j in (0..k-1) )
flatten([[A225076(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
A225398
Triangle read by rows: absolute values of odd-numbered rows of A225433.
Original entry on oeis.org
1, 1, 38, 1, 1, 676, 4806, 676, 1, 1, 10914, 362895, 1346780, 362895, 10914, 1, 1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1, 1, 2796190, 1063096365, 35677598760, 267248150610, 554291429748, 267248150610, 35677598760, 1063096365, 2796190, 1
Offset: 1
Triangle begins:
1;
1, 38, 1;
1, 676, 4806, 676, 1;
1, 10914, 362895, 1346780, 362895, 10914, 1;
1, 174752, 20554588, 263879264, 683233990, 263879264, 20554588, 174752, 1;
-
(* First program *)
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-(m- 1))*t[n-1,k,m]];
T[n_, k_]:= T[n, k]= t[n+1, k+1, 3]; (* t(n,k,3) = A142458 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n, 1, 14, 2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m +1)*t[n-1,k,m]]; (* t(n,k,3) = A142458 *)
A225398[n_, k_]:= A225398[n, k]= Sum[(-1)^(k-j-1)*t[2*n,j+1,3], {j,0,k-1}];
Table[A225398[n, k], {n,12}, {k,2*n-1}] //Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142458(n, k): return T(n, k, 3)
def A225398(n,k): return sum( (-1)^(k-j-1)*A142458(2*n, j+1) for j in (0..k-1) )
flatten([[A225398(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
A171693
Expansion of g.f.: 2^(1+floor(n/2))*n!*((1-y)^(n+1)/(1+y))*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 0.
Original entry on oeis.org
1, -1, 14, -1, 4, -16, 504, -16, 4, -34, 372, 2178, 35288, 2178, 372, -34, 496, -5888, 65728, 749824, 4185760, 749824, 65728, -5888, 496, -11056, 154912, -767856, 23350656, 230640288, 770603712, 230640288, 23350656, -767856, 154912, -11056
Offset: 0
Irregular triangle begins as:
1;
-1, 14, -1;
4, -16, 504, -16, 4;
-34, 372, 2178, 35288, 2178, 372, -34;
496, -5888, 65728, 749824, 4185760, 749824, 65728, -5888, 496;
-
m= 0;
f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t]));
T[n_]:= T[n]= CoefficientList[2^(1+Floor[n/2])*n!*(1-y)^(n+1)/(1 + y)*SeriesCoefficient[Series[f[t, y, m], {t,0,20}], n], y];
Table[T[2*n+1], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 30 2022 *)
A171694
Expansion of g.f.: 4^n*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = -2.
Original entry on oeis.org
1, 2, 2, 6, 20, 6, 26, 154, 190, 14, 150, 1160, 3428, 1352, 54, 1082, 9174, 50404, 51724, 10434, 62, 9366, 78476, 683962, 1376232, 734122, 65996, 966, 94586, 735410, 9096210, 30488714, 32703374, 8931318, 530534, -4786, 1091670, 7562000, 122859048, 611454960, 1132022084, 653476464, 111158184, 2715536, 71574
Offset: 0
Triangle begins as:
1;
2, 2;
6, 20, 6;
26, 154, 190, 14;
150, 1160, 3428, 1352, 54;
1082, 9174, 50404, 51724, 10434, 62;
9366, 78476, 683962, 1376232, 734122, 65996, 966;
94586, 735410, 9096210, 30488714, 32703374, 8931318, 530534, -4786;
-
m= -2;
f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t]));
Table[CoefficientList[4^n*n!*(1-y)^(n+1)*SeriesCoefficient[Series[f[t,y,m], {t,0,20}], n], y], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
A171695
Expansion of g.f.: 2^(floor((n+1)/2))*n!*(1-y)^(n+1)*f(x, y, m), where f(x, y, m) = 2^(m+1)*exp(2^m*t)/((1-y*exp(t))*(1 + (2^(m+1)-1)*exp(2^m*t))), and m = 1.
Original entry on oeis.org
1, 1, 1, -1, 6, -1, -1, 7, 25, -7, 10, -44, 152, -20, -2, -26, 198, -292, 1628, -642, 94, -154, 1000, -1954, 6416, 1586, -1400, 266, 1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378, 1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128
Offset: 0
Triangle begins as:
1;
1, 1;
-1, 6, -1;
-1, 7, 25, -7;
10, -44, 152, -20, -2;
-26, 198, -292, 1628, -642, 94;
-154, 1000, -1954, 6416, 1586, -1400, 266;
1646, -13606, 51774, -75094, 175226, -73890, 15962, -1378;
1000, -3936, -4448, 190432, 37104, 779104, -472160, 133152, -15128;
-
m= 1;
f[t_, y_, m_]= 2^(m+1)*Exp[2^m*t]/((1-y*Exp[t])*(1+(2^(m+1)-1)*Exp[2^m*t]));
Table[CoefficientList[2^(Floor[(n+1)/2])*n!*(1-y)^(n+1)*SeriesCoefficient[ Series[f[t,y,m], {t,0,20}], n], y], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
A225415
Triangle read by rows: absolute values of odd-numbered rows of A225434.
Original entry on oeis.org
1, 1, 58, 1, 1, 1556, 12006, 1556, 1, 1, 39054, 1461615, 5647300, 1461615, 39054, 1, 1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1, 1, 24414050, 11462721645, 414730580760, 3221733789330, 6783391017228, 3221733789330, 414730580760, 11462721645, 24414050, 1
Offset: 1
Triangle begins:
1;
1, 58, 1;
1, 1556, 12006, 1556, 1;
1, 39054, 1461615, 5647300, 1461615, 39054, 1;
1, 976552, 135028828, 1838120344, 4873361350, 1838120344, 135028828, 976552, 1;
-
(* First program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1,(m*n-m*k+1)*t[n-1, k-1, m] + (m*k-(m-1))*t[n-1, k, m]];
T[n_, k_]:= T[n, k] = t[n+1, k+1,4]; (* t(n,k,4) = A142459 *)
Flatten[Table[CoefficientList[Sum[T[n, k]*x^k, {k,0,n}]/(1+x), x], {n,1,14,2}]]
(* Second program *)
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k-m+1)*t[n-1,k,m]]; (* t(n,k,4) = A142459 *)
T[n_, k_]:= T[n, k]= Sum[ (-1)^(k-j-1)*t[2*n,j+1,4], {j,0,k-1}];
Table[T[n, k], {n,12}, {k,2*n-1}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142459(n, k): return T(n, k, 4)
def A225415(n,k): return sum( (-1)^(k-j-1)*A142459(2*n, j+1) for j in (0..k-1) )
flatten([[A225415(n, k) for k in (1..2*n-1)] for n in (1..12)]) # G. C. Greubel, Mar 19 2022
A225532
Triangle T(n, k) = abs(A225483(n/2, k)) if (n mod 2 = 0), otherwise abs(A225482((n-1)/2, k) - A225483((n-1)/2, k-1)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 26, 1, 1, 27, 27, 1, 1, 120, 1192, 120, 1, 1, 121, 1312, 1312, 121, 1, 1, 502, 14609, 88736, 14609, 502, 1, 1, 503, 15111, 103345, 103345, 15111, 503, 1, 1, 2036, 152638, 2205524, 9890752, 2205524, 152638, 2036, 1, 1, 2037, 154674, 2358162, 12096276, 12096276, 2358162, 154674, 2037, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 26, 1;
1, 27, 27, 1;
1, 120, 1192, 120, 1;
1, 121, 1312, 1312, 121, 1;
1, 502, 14609, 88736, 14609, 502, 1;
1, 503, 15111, 103345, 103345, 15111, 503, 1;
-
(* First program *)
Needs["Combinatorica`"];
p[n_, x_]:= p[n,x]= Sum[If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<=Floor[n/2], (-1)^i*Eulerian[n+1,i]*x^i, (-1)^(n-i+1)*Eulerian[n+1,i]*x^i]], {i,0,n}]/(1 - x^2);
q[n_, x_]= If[Mod[n,2]==0, (1-x)*p[n/2,x], p[(n+1)/2,x]];
Table[Abs[CoefficientList[q[(4*n +(-1)^n +5)/2, x], x]], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 29 2022 *)
(* Second program *)
A008292[n_, k_]:= A008292[n, k]= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}];
f[n_, k_]:= f[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], f[n,k-1] + (-1)^k*A008292[n+2,k+1], f[n,n-k]]]; (* f=A159041 *)
A225483[n_, k_]:= Sum[(-1)^(k-j)*f[2*n+1,j], {j,0,k}];
T[n_, k_]:= If[Mod[n,2]==0, A225483[n/2, k], A225483[(n-1)/2, k] - A225483[(n - 1)/2, k-1] ]//Abs;
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 29 2022 *)
-
def A008292(n, k): return sum( (-1)^j*(k-j)^n*binomial(n+1, j) for j in (0..k) )
@CachedFunction
def f(n, k): # A159041
if (k==0 or k==n): return 1
elif (k <= (n//2)): return f(n, k-1) + (-1)^k*A008292(n+2, k+1)
else: return f(n, n-k)
def A225483(n,k): return sum( (-1)^(k-j)*f(2*n+1,j) for j in (0..k) )
@CachedFunction
def A225532(n,k):
if (n%2==0): return abs(A225483(n/2, k))
else: return abs( A225483((n-1)/2, k) - A225483((n-1)/2, k-1) )
flatten([[A225532(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 29 2022
Showing 1-8 of 8 results.
Comments