A357593 Number of faces of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector.
8, 26, 88, 298, 1016, 3466, 11832, 40394, 137912, 470858
Offset: 1
Examples
For n=1, the polytope is the simplex with vertices (1,0,0), (0,1,0), and (0,0,1) that has a(1)=8 faces (1 empty face, 3 vertices, 3 edges, and 1 facet).
Links
- L. Escobar, P. Gallardo, J. González-Anaya, J. L. González, G. Montúfar, and A. H. Morales, Enumeration of max-pooling responses with generalized permutohedra, arXiv:2209.14978 [math.CO], 2022. (See Table 3)
Programs
-
Sage
def a(n): return add(PP(n,3,1).f_vector()) def Delta(I,n): IM = identity_matrix(n) return Polyhedron(vertices=[IM[e] for e in I],backend='normaliz') def Py(n,SL,yL): return sum(yL[i]*Delta(SL[i],n) for i in range(len(SL))) def PP(n,k,s): SS = [set(range(s*i,k+s*i)) for i in range(n)],[1,]*(n) return Py(s*(n-1)+k,SS[0],SS[1]) [a(n) for n in range(1,4)]