A357600 Largest number k such that C(-k) is the cyclic group of order n, where C(D) is the class group of the quadratic field with discriminant D; or 0 if no such k exists.
163, 427, 907, 1555, 2683, 3763, 5923, 5947, 10627, 13843, 15667, 17803, 20563, 30067, 34483, 31243, 37123, 48427, 38707, 58507, 61483, 85507, 90787, 111763, 93307, 103027, 103387, 126043, 166147, 134467, 133387, 164803, 222643, 189883, 210907, 217627, 158923, 289963, 253507
Offset: 1
Examples
Let h(D) denote the class number of the quadratic field with discriminant D. n | Largest number k such | k' = largest number k | C(-k') | that C(-k) = C_n | such that h(-k) = n | ----+-----------------------+-----------------------+---------- 8 | 5947 | 6307 | C_2 X C_4 48 | 333547 | 335203 | C_2 X C_24 52 | 435163 | 439147 | C_2 X C_26 64 | 680947 | 693067 | C_2 X C_32 68 | 780187 | 819163 | C_2 X C_34 96 | 1681243 | 1684027 | C_2 X C_48
Links
- Jianing Song, Table of n, a(n) for n = 1..100
Comments