A357654 Number of lattice paths from (0,0) to (i,n-2*i) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}.
1, 0, 1, 1, 1, 2, 3, 3, 6, 9, 10, 19, 29, 34, 63, 97, 118, 215, 333, 416, 749, 1165, 1485, 2650, 4135, 5355, 9490, 14845, 19473, 34318, 53791, 71313, 125104, 196417, 262735, 459152, 721887, 973027, 1694914, 2667941, 3619955, 6287896, 9907851, 13521307, 23429158
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2500
- Wikipedia, Counting lattice paths
Programs
-
Magma
A120730:= func< n, k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >; A357654:= func< n | (&+[A120730(n-k, k): k in [0..Floor(n/2)]]) >; [A357654(n): n in [0..50]]; // G. C. Greubel, Nov 07 2022
-
Maple
b:= proc(x, y) option remember; `if`(min(x, y)<0 or y>x, 0, `if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1))) end: a:= n-> add(b(i, n-2*i), i=ceil(n/3)..floor(n/2)): seq(a(n), n=0..44);
-
Mathematica
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)]; A357654[n_]:= Sum[A120730[n-k,k], {k,0,Floor[n/2]}]; Table[A357654[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A357654(n): return sum(A120730(n-k,k) for k in range((n//2)+1)) [A357654(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
Formula
a(n) = Sum_{k=0..floor(n/2)} A120730(n-k, k). - G. C. Greubel, Nov 07 2022