A357669 a(n) is the number of divisors of the powerful part of n.
1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e == 1, 1, e + 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(e = factor(n)[,2]); prod(i=1, #e, if(e[i] == 1, 1, e[i] + 1))};
Formula
a(n) = 1 iff n is squarefree (A005117).
Multiplicative with a(p^e) = 1 if e = 1 and e+1 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 - p^2 + 2*p - 1)/(p^2*(p - 1))) = 2.71098009471568319328... .
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 2/p^(2*s) - 1/p^(3*s)). - Amiram Eldar, Sep 09 2023
Comments