cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366145 The number of divisors of the largest divisor of n that is a cubefull number (A036966).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, x+1), factor(n)[, 2]));

Formula

a(n) = A000005(A360540(n)).
a(n) = A000005(n)/A366147(n).
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A000005(n), with equality if and only if n is cubefull (A036966).
Multiplicative with a(p^e) = 1 if e <= 2 and e+1 otherwise.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 3/p^(3*s) - 2/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 - 1/p^2 + 3/p^3 + 1/p^4 - 2/p^5) = 1.76434793373691907811... .

A368104 The number of bi-unitary divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Crossrefs

Similar sequences: A323308, A357669, A368106.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 || EvenQ[e], e, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1 || !(x%2), x, x+1), factor(n)[, 2]));

Formula

a(n) = A286324(A057521(n)).
Multiplicative with a(p^e) = e if e is even or e = 1, and e + 1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 2/p^3 - 1/p^4) = 2.12258268547914758409... .

A368106 The number of infinitary divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Crossrefs

Similar sequences: A323308, A357669, A368104.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, 2^DigitCount[e, 2, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 1, 2^hammingweight(x)), factor(n)[, 2]));

Formula

a(n) = A037445(A057521(n)).
Multiplicative with a(p) = 1 and a(p^e) = 2^A000120(e) for e >= 2.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A037445(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.89684906463124350536..., where f(x) = (1-x) * (Product_{k>=0} (1 + 2*x^(2^k)) - x).

A380160 a(n) is the value of the Euler totient function when applied to the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 4, 20, 1, 18, 2, 1, 1, 1, 16, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 18, 1, 4, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 24, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, (p-1)*p^(e-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)));}

Formula

a(n) = A000010(A057521(n)).
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A000010(n), with equality if and only if n is powerful (A001694).
Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(e-1) if e >= 2.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(s-1) + 1/p^(2*s-2) - 2/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 2/p^(3/2) - 1/p^2 - 2/p^(5/2)) = 1.96428740396979919886... .

A377138 Powerful numbers that have more divisors than any smaller powerful number.

Original entry on oeis.org

1, 4, 8, 16, 32, 36, 72, 144, 216, 288, 432, 576, 864, 900, 1728, 1800, 3600, 5400, 7200, 10800, 14400, 21600, 32400, 43200, 64800, 86400, 88200, 176400, 264600, 352800, 529200, 705600, 1058400, 1587600, 2116800, 3175200, 4233600, 6350400, 8467200, 10584000, 12700800
Offset: 1

Views

Author

Amiram Eldar, Oct 17 2024

Keywords

Comments

First differs from A283052 at n = 12.
Indices of records in A357669.
The corresponding record values are 1, 3, 4, 5, 6, 9, 12, 15, 16, 18, 20, 21, 24, 27, 28, 36, ... (see the link for more values).

Crossrefs

Subsequence of A001694 and A025487.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, e + 1]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; With[{v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq]
Showing 1-5 of 5 results.