A357671 a(n) = Sum_{k = 0..n} ( binomial(n+k-1,k) + binomial(n+k-1,k)^2 ).
2, 4, 20, 166, 1812, 22504, 297362, 4067298, 56897300, 809019580, 11649254520, 169444978124, 2485270719570, 36707044807996, 545386321069862, 8144809732228666, 122177690210103060, 1839933274439787940, 27804610626798500372, 421476329345312885304, 6406685025104178888312
Offset: 0
Examples
Examples of supercongruences: a(19) - a(1) = 421476329345312885304 - 4 = (2^2)*(5^2)*(19^5)*1913*2383*373393 == 0 (mod 19^5). a(25) - a(5) = 5375188503768910125546897504 - 22504 = (2^3)*(5^10)*1858537* 37019662696111 == 0 (mod 5^10).
Programs
-
Maple
seq(add( binomial(n+k-1,k) + binomial(n+k-1,k)^2, k = 0..n ), n = 0..20);
-
PARI
a(n) = sum(k = 0, n, binomial(n+k-1,k) + binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022
-
Python
from math import comb def A357671(n): return comb(n<<1,n)+sum(comb(n+k-1,k)**2 for k in range(n+1)) if n else 2 # Chai Wah Wu, Oct 28 2022
Comments