A357674 a(n) = ( Sum_{k = 0..2*n} binomial(n+k-1,k) )^4 * ( Sum_{k = 0..2*n} binomial(n+k-1,k)^2 )^3.
1, 2187, 8422734375, 202402468703748096, 9223976224194016590174375, 587835594121137662072707812564687, 46157429480574073282465608886521546620928, 4181198339699286332943143923058721957212160000000, 420336565507755143573799144638372909582306681004894518439
Offset: 0
Examples
Example of a supercongruence: a(7) - a(1) = 4181198339699286332943143923058721957212160000000 - 2187 = (3^7)*(7^5)*211*298225180113209*1807736060307048120859243 == 0 (mod 7^5).
Programs
-
Maple
seq((add(binomial(n+k-1,k), k = 0..2*n))^4 * (add( binomial(n+k-1,k)^2, k = 0..2*n))^3, n = 0..20);
-
Mathematica
Table[Binomial[3*n,n]^4 * Sum[Binomial[n+k-1,k]^2, {k, 0, 2*n}]^3, {n, 0, 10}] (* Vaclav Kotesovec, May 31 2025 *)
-
PARI
a(n) = sum(k = 0, 2*n, binomial(n+k-1,k))^4 * sum(k = 0, 2*n, binomial(n+k-1,k)^2)^3; \\ Michel Marcus, Oct 24 2022
Formula
a(n) = ( A005809(n) )^4 * (Sum_{k = 0..2*n} binomial(n+k-1,k)^2 )^3.
a(n) ~ 3^(30*n+5) / (125 * Pi^5 * n^5 * 2^(20*n+10)). - Vaclav Kotesovec, May 31 2025
Comments