cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357680 a(n) is the number of primes that can be written as +-1! +- 2! +- 3! +- ... +- n!.

Original entry on oeis.org

0, 1, 3, 4, 7, 11, 16, 29, 42, 72, 121, 191, 367, 693, 1215, 2221, 4116, 7577, 13900, 25634, 48322, 90046, 169016, 317819, 600982, 1138049, 2158939, 4103414, 7818761, 14923641, 28534404, 54624906, 104786140, 201233500, 386914300, 744876280, 1435592207
Offset: 1

Views

Author

Zhining Yang, Oct 09 2022

Keywords

Examples

			For n=4, a(4)=4 means there exist 4 solutions ([17, 19, 29, 31]) as follows:
  17 =  1! - 2! - 3! + 4!;
  19 = -1! + 2! - 3! + 4!;
  29 =  1! - 2! + 3! + 4!;
  31 = -1! + 2! + 3! + 4!.
		

Crossrefs

Programs

  • Python
    from sympy import isprime,factorial
    def A357680(nmax):
        a=[0]
        t=[1]
        for n in range(2, nmax+1):
            k=factorial(n)
            s=[]
            for j in t:
                s.append(k-j)
                s.append(k+j)
            a.append(sum(1 for p in s if isprime(p)))
            t=s
        return(a)
    print(A357680(21))
    
  • Python
    from sympy import isprime
    from math import factorial
    from itertools import product
    def a(n):
        f = [2*factorial(i) for i in range(1, n+1)]
        t = sum(f)//2
        return sum(1 for s in product([0, 1], repeat=n-1) if isprime(t-sum(f[i] for i in range(n-1) if s[i])))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Oct 15 2022

Extensions

a(28)-a(30) from Michael S. Branicky, Oct 09 2022
a(31)-a(32) from Michael S. Branicky, Oct 10 2022
a(33)-a(34) from Michael S. Branicky, Oct 13 2022
a(35)-a(36) from Michael S. Branicky, Oct 26 2022
a(37) from Michael S. Branicky, Nov 13 2022