cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357712 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * log(1-x) ).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 3, 6, 12, 0, 1, 0, 4, 9, 26, 60, 0, 1, 0, 5, 12, 42, 140, 360, 0, 1, 0, 6, 15, 60, 240, 896, 2520, 0, 1, 0, 7, 18, 80, 360, 1614, 6636, 20160, 0, 1, 0, 8, 21, 102, 500, 2520, 12474, 55804, 181440, 0, 1, 0, 9, 24, 126, 660, 3620, 20160, 108900, 525168, 1814400, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2022

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,   1,   1, ...
  0,  0,   0,   0,   0,   0, ...
  0,  1,   2,   3,   4,   5, ...
  0,  3,   6,   9,  12,  15, ...
  0, 12,  26,  42,  60,  80, ...
  0, 60, 140, 240, 360, 500, ...
		

Crossrefs

Columns k=0-4 give: A000007, (-1)^n * A105752(n), A263687, A357703, A357711.
Main diagonal gives A357683.
Cf. A357681.

Programs

  • PARI
    T(n, k) = sum(j=0, n\2, k^j*abs(stirling(n, 2*j, 1)));
    
  • PARI
    T(n, k) = round((prod(j=0, n-1, sqrt(k)+j)+prod(j=0, n-1, -sqrt(k)+j)))/2;

Formula

T(n,k) = Sum_{j=0..floor(n/2)} k^j * |Stirling1(n,2*j)|.
T(n,k) = ( (sqrt(k))_n + (-sqrt(k))_n )/2, where (x)_n is the Pochhammer symbol.
T(0,k) = 1, T(1,k) = 0; T(n,k) = (2*n-3) * T(n-1,k) - (n^2-4*n+4-k) * T(n-2,k).

A357719 Expansion of e.g.f. cos( 2 * log(1+x) ).

Original entry on oeis.org

1, 0, -4, 12, -28, 40, 200, -3360, 35680, -357120, 3644800, -38896000, 437756800, -5206406400, 65372153600, -864339840000, 11991424640000, -173800340480000, 2617640829440000, -40693929269760000, 647089190924800000, -10383194262604800000
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2022

Keywords

Crossrefs

Column k=4 of A357720.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(cos(2*log(1+x))))
    
  • PARI
    a(n) = sum(k=0, n\2, (-4)^k*stirling(n, 2*k, 1));
    
  • PARI
    a(n) = (-1)^n*(prod(k=0, n-1, 2*I+k)+prod(k=0, n-1, -2*I+k))/2;
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=2, n, v[i+1]=-(2*i-3)*v[i]-(i^2-4*i+8)*v[i-1]); v;

Formula

a(n) = Sum_{k=0..floor(n/2)} (-4)^k * Stirling1(n,2*k).
a(n) = (-1)^n * ( (2 * i)_n + (-2 * i)_n )/2, where (x)_n is the Pochhammer symbol and i is the imaginary unit.
a(0) = 1, a(1) = 0; a(n) = -(2*n-3) * a(n-1) - (n^2-4*n+8) * a(n-2).
Showing 1-2 of 2 results.