cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357743 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n, k+1) + A(n+1, k).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 1, 3, 2, 3, 1, 3, 4, 5, 5, 4, 3, 2, 5, 3, 6, 3, 5, 2, 3, 5, 6, 5, 5, 6, 5, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 5, 7, 8, 7, 7, 8, 7, 5, 4, 3, 7, 4, 9, 5, 10, 5, 9, 4, 7, 3, 5, 8, 9, 7, 8, 11, 11, 8, 7, 9, 8, 5, 2, 7, 5, 8, 3, 9, 6, 9, 3, 8, 5, 7, 2
Offset: 0

Views

Author

Rémy Sigrist, Nov 29 2022

Keywords

Comments

This sequence is closely related to A002487 and A355855: we can build this sequence:
- by starting from an equilateral triangle with values 0, 1, 1:
0
/ \
1---1
- and repeatedly applying the following substitution:
t
/ \
t / \
/ \ --> t+u---t+v
u---v / \ / \
/ \ / \
u----u+v----v
The sequence reduced modulo an odd prime number presents rich nonperiodic patterns (see illustrations in Links section).

Examples

			Array A(n, k) begins:
  n\k |  0  1  2   3  4   5   6   7  8   9  10
  ----+---------------------------------------
    0 |  0  1  1   2  1   3   2   3  1   4   3
    1 |  1  2  3   3  4   5   5   4  5   7   8
    2 |  1  3  2   5  3   6   3   7  4   9   5
    3 |  2  3  5   6  5   5   8   9  7   8  11
    4 |  1  4  3   5  2   7   5   8  3   9   6
    5 |  3  5  6   5  7  10  11   9  8  11  11
    6 |  2  5  3   8  5  11   6  11  5  10   5
    7 |  3  4  7   9  8   9  11  10  7   7  12
    8 |  1  5  4   7  3   8   5   7  2   9   7
    9 |  4  7  9   8  9  11  10   7  9  14  17
   10 |  3  8  5  11  6  11   5  12  7  17  10
.
The first antidiagonals are:
              0
             1 1
            1 2 1
           2 3 3 2
          1 3 2 3 1
         3 4 5 5 4 3
        2 5 3 6 3 5 2
       3 5 6 5 5 6 5 3
      1 4 3 5 2 5 3 4 1
     4 5 7 8 7 7 8 7 5 4
		

Crossrefs

See A358871 for a similar sequence.

Programs

  • PARI
    A(n,k) = { if (n==0 && k==0, 0, n==1 && k==0, 1, n==0 && k==1, 1, n%2==0 && k%2==0, A(n/2,k/2), n%2==0, A(n/2,(k-1)/2) + A(n/2,(k+1)/2), k%2==0, A((n-1)/2,k/2) + A((n+1)/2,k/2), A((n+1)/2,(k-1)/2) + A((n-1)/2,(k+1)/2)); }

Formula

A(n, k) = A(k, n).
A(n, 0) = A002487(n).
A(n, 1) = A007306(n+1) for any n > 0.