A357743 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n, k+1) + A(n+1, k).
0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 1, 3, 2, 3, 1, 3, 4, 5, 5, 4, 3, 2, 5, 3, 6, 3, 5, 2, 3, 5, 6, 5, 5, 6, 5, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 5, 7, 8, 7, 7, 8, 7, 5, 4, 3, 7, 4, 9, 5, 10, 5, 9, 4, 7, 3, 5, 8, 9, 7, 8, 11, 11, 8, 7, 9, 8, 5, 2, 7, 5, 8, 3, 9, 6, 9, 3, 8, 5, 7, 2
Offset: 0
Examples
Array A(n, k) begins: n\k | 0 1 2 3 4 5 6 7 8 9 10 ----+--------------------------------------- 0 | 0 1 1 2 1 3 2 3 1 4 3 1 | 1 2 3 3 4 5 5 4 5 7 8 2 | 1 3 2 5 3 6 3 7 4 9 5 3 | 2 3 5 6 5 5 8 9 7 8 11 4 | 1 4 3 5 2 7 5 8 3 9 6 5 | 3 5 6 5 7 10 11 9 8 11 11 6 | 2 5 3 8 5 11 6 11 5 10 5 7 | 3 4 7 9 8 9 11 10 7 7 12 8 | 1 5 4 7 3 8 5 7 2 9 7 9 | 4 7 9 8 9 11 10 7 9 14 17 10 | 3 8 5 11 6 11 5 12 7 17 10 . The first antidiagonals are: 0 1 1 1 2 1 2 3 3 2 1 3 2 3 1 3 4 5 5 4 3 2 5 3 6 3 5 2 3 5 6 5 5 6 5 3 1 4 3 5 2 5 3 4 1 4 5 7 8 7 7 8 7 5 4
Links
- Rémy Sigrist, Colored representation of the first 512 antidiagonals (where the color is function of A(n, k) mod 3)
- Rémy Sigrist, Colored representation of the first 512 antidiagonals (where the color is function of A(n, k) mod 5)
- Index entries for sequences related to Stern's sequences
Programs
-
PARI
A(n,k) = { if (n==0 && k==0, 0, n==1 && k==0, 1, n==0 && k==1, 1, n%2==0 && k%2==0, A(n/2,k/2), n%2==0, A(n/2,(k-1)/2) + A(n/2,(k+1)/2), k%2==0, A((n-1)/2,k/2) + A((n+1)/2,k/2), A((n+1)/2,(k-1)/2) + A((n-1)/2,(k+1)/2)); }
Comments