cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357818 Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 4, 19, 7, 23, 2, 17, 53, 55, 169, 175, 89, 641, 1303, 331, 1345, 1373, 1387, 7061, 2377, 9613, 29119, 29539, 29749, 6017, 6065, 6121, 6163, 31151, 31291, 15803, 3977, 16013, 48319, 24317, 12211, 233899, 58774, 472757, 59344, 119543, 1918673, 21249043, 21336823
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
		

Crossrefs

Cf. A001615, A173290, A357819 (denominators).
Similar sequences: A028415, A104528, A212717.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).