cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357824 Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2022

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,   1,    1,     1,       1,        1,         1, ...
  1,  1,   1,    1,     1,       1,        1,         1, ...
  2,  2,   2,    2,     2,       2,        2,         2, ...
  2,  3,   5,    9,    17,      33,       65,       129, ...
  3,  6,  14,   36,    98,     276,      794,      2316, ...
  3, 10,  42,  190,   882,    4150,    19722,     94510, ...
  4, 20, 132,  980,  7812,   65300,   562692,   4939220, ...
  4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
		

Crossrefs

Rows n=1-5 give: A000012, A007395, A000051, A001550, A074511.
Main diagonal gives A357825.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]];
    A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..floor(n/2)} A008315(n,j)^k.
A(n,k) = Sum_{j=0..n} A120730(n,j)^k for k>=1, A(n,0) = A008619(n).

A357871 Total number of n-multisets of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2).

Original entry on oeis.org

1, 1, 2, 5, 21, 183, 3424, 155833, 25962389, 10152021001, 18355563410823, 94826525443572702, 1720192707342762602561, 135432808172830648285721490, 25492564910167901918236137649748, 28315683468644276652408152922412713937, 65407605920313732627652296139090181364409413
Offset: 0

Views

Author

Alois P. Heinz, Oct 17 2022

Keywords

Examples

			a(3) = 5:
  {///, ///, ///},
  {//\, //\, //\},
  {//\, //\, /\/},
  {//\, /\/, /\/},
  {/\/, /\/, /\/}.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> add(binomial(b(n, n-2*j)+n-1, n), j=0..n/2):
    seq(a(n), n=0..16);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}]]];
    a[n_] := Sum[Binomial[b[n, n-2*j]+n-1, n], {j, 0, n/2}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 17 2022, after Alois P. Heinz *)
    Table[Sum[Binomial[Binomial[n,k]*(n-2*k+1)/(n-k+1) + n - 1,n], {k,0,n/2}],{n,0,16}] (* Vaclav Kotesovec, Nov 17 2022 *)

Formula

a(n) = Sum_{j=0..floor(n/2)} binomial(A008315(n,j)+n-1,n).
From Vaclav Kotesovec, Nov 19 2022: (Start)
a(n)^(1/n) ~ exp(1/2) * 2^(n + 3/2) / (sqrt(Pi) * n^2).
Limit_{n->infinity} a(n) / (exp(n/2) * 2^(n^2 + 3*n/2) / (Pi^(n/2) * n^(2*n + 1/2))) does not exist, see also graph. (End)
Showing 1-2 of 2 results.