cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357825 Total number of n-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j = 0..floor(n/2).

Original entry on oeis.org

1, 1, 2, 9, 98, 4150, 562692, 211106945, 404883552194, 1766902576146876, 40519034229909243476, 2708397617879598970178238, 658332084097982587522119612196, 735037057881394837614680080889845116, 2030001034486747324990010196845670569155080
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2022

Keywords

Crossrefs

Main diagonal of A357824.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    a:= n-> add(b(n, n-2*j)^n, j=0..n/2):
    seq(a(n), n=0..15);
  • Mathematica
    Table[Sum[(Binomial[n, k]*(n - 2*k + 1)/(n - k + 1))^n, {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 17 2022 *)

Formula

a(n) = A357824(n,n).
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^n.
a(n) = Sum_{j=0..n} A120730(n,j)^n.
a(n) mod 2 = 1 <=> n in { A000225 }.
From Vaclav Kotesovec, Nov 17 2022: (Start)
a(n)^(1/n) ~ exp(-1/2) * 2^(n + 3/2) / (sqrt(Pi)*n).
Limit_{n->oo} a(n) / (2^(n^2 + 3*n/2) / (n^n * exp(n/2) * Pi^(n/2))) does not exist, see also graph. (End)
Conjecture: the superconguence a(2*p-1) == 1 (mod p^3) holds for all primes p >= 5 (checked up to p = 101). - Peter Bala, Mar 20 2023

A358495 a(n) = Sum_{k=0..n} binomial(binomial(n, k), n).

Original entry on oeis.org

1, 2, 1, 2, 17, 506, 48772, 13681602, 12287555282, 33669343492094, 311704008906073448, 9309805333008203501246, 987309241535765332024955809, 351345748109942610415182510895442, 459648902729700156671704473390158212154, 2067884865276847662816755891452805155809167114
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[Binomial[n, k], n], {k, 0, n}], {n, 0, 16}]
  • PARI
    a(n) = sum(k=0, n, binomial(binomial(n, k), n)); \\ Michel Marcus, Nov 19 2022

Formula

a(n) ~ c * binomial(binomial(n, n/2), n), where c = EllipticTheta[3,0,1/E^2] = JacobiTheta3(0,exp(-2)) = A218792 = 1.271341522189... if n is even and c = EllipticTheta[2,0,1/E^2] = JacobiTheta2(0,exp(-2)) = 1.23528676585389... if n is odd.
Equivalently, a(n) ~ c * 2^(n^2 + n/2 - 1/2) * exp(n - 1/4) / (Pi^((n+1)/2) * n^((3*n+1)/2)).

A358496 a(n) = Sum_{k=0..n} binomial(binomial(n, k), k).

Original entry on oeis.org

1, 2, 3, 7, 24, 176, 2623, 79479, 5141566, 669156932, 178757299486, 104033138190939, 125893536876304530, 320091464865316176891, 1828276720220263211454403, 22393381352339181425954204921, 582288411818399885839904060337943, 34678571156322738984042119670750665153
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[Binomial[n, k], k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(binomial(n, k), k)); \\ Michel Marcus, Nov 19 2022

Formula

Limit_{n->infinity} a(n)^(1/n^2) = r^(r^2/(1-2*r)) = 1.533628065110458582..., where r = A220359 = 0.70350607643066243096929661621777... is the real root of the equation (1-r)^(2*r-1) = r^(2*r).
Showing 1-3 of 3 results.