cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357837 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2.

Original entry on oeis.org

0, 4, 10, 20, 32, 46, 64, 84, 106, 132, 160, 190, 224, 260, 298, 340, 384, 430, 480, 532, 586, 644, 704, 766, 832, 900, 970, 1044, 1120, 1198, 1280, 1364, 1450, 1540, 1632, 1726, 1824, 1924, 2026, 2132, 2240, 2350, 2464, 2580, 2698, 2820, 2944, 3070, 3200, 3332
Offset: 0

Views

Author

Stefano Spezia, Oct 17 2022

Keywords

Examples

			Illustrations for n = 1..8:
        _           _ _          _ _ _
       |_|         |  _|        |  _|_|
                   |_|_|        |_|  _|
                                |_|_|_|
    a(1) = 4     a(2) = 10     a(3) = 20
     _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
    |  _|_| |   |  _|_|  _|  |  _|_|  _|_|
    |_|  _|_|   |_|  _|_| |  |_|  _|_|  _|
    |_|_|  _|   |_|_|  _|_|  |_|_|  _|_| |
    |_ _|_|_|   |  _|_|  _|  |  _|_|  _|_|
                |_|_ _|_|_|  |_|  _|_|  _|
                             |_|_|_ _|_|_|
    a(4) = 32    a(5) = 46     a(6) = 64
      _ _ _ _ _ _ _      _ _ _ _ _ _ _ _
     |  _|_|  _|_| |    |  _|_|  _|_|  _|
     |_|  _|_|  _|_|    |_|  _|_|  _|_| |
     |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
     |  _|_|  _|_| |    |  _|_|  _|_|  _|
     |_|  _|_|  _|_|    |_|  _|_|  _|_| |
     |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
     |_ _|_|_ _|_|_|    |  _|_|  _|_|  _|
                        |_|_ _|_|_ _|_|_|
        a(7) = 84           a(8) = 106
		

Crossrefs

Cf. A002264, A002522, A005843, A047410 (first differences), A071619, A211547.
Cf. A345118.

Programs

  • Mathematica
    Table[2(Ceiling[2(n+1)^2/3]-1),{n,0,49}]

Formula

a(n) = 2*(ceiling(2*(n+1)^2/3) - 1).
a(n) = 2*(A071619(n+1) - 1).
a(n) = 2*(1 + n^2 - 2*(n - 2)*floor((n - 1)/3) + 3*floor((n - 1)/3)^2) for n > 0.
a(n) = Sum_{k=1..n} A047410(k+1) for n > 0.
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4.
O.g.f.: 2*x*(2 + x + 2*x^2 - x^3)/((1 - x)^3*(1 + x + x^2)).
E.g.f.: 2*exp(-x/2)*(exp(3*x/2)*(6*x*(3 + x) - 1) + cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9.