A357840 Numbers k in A018900 with arithmetic derivative k' (A003415) in A018900.
6, 9, 20, 40, 65, 68, 96, 144, 192, 528, 576, 1028, 4097, 73728, 81920, 262148, 557056, 6291456, 9437184, 12582912, 201326592, 335544320, 2415919104, 1374389534720, 11258999068426240, 90071992547409920, 648518346341351424, 78398662313265594368, 116056878683004400771792896
Offset: 1
Examples
6 = 110_2 = 2^2 + 2^1 and 6' = 5 = 101_2 = 2^2 + 2^0, so 6 is a term. 9 = 1001_2 = 2^3 + 2^0 and 9' = 6 = 110_2, so 9 is a term. 20 = 10100_2 = 2^4 + 2^2 and 20' = 24 = 11000_2 = 2^4 + 2^3, so 20 is a term.
Programs
-
Magma
f1:=func
; f:=func ; a:=[]; for n in [1..75] do sn:=[2^n+2^k: k in [0..n-1]]; for i in [1..#sn] do if f1(sn[i]) and f1(Floor(f(sn[i]))) then Append(~a,sn[i]); end if; end for; end for; a; -
Mathematica
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Union[Plus @@@ (2^Subsets[Range[0, 86], {2}])], Count[IntegerDigits[d[#], 2], 1] == 2 &] (* Amiram Eldar, Oct 21 2022 *)
-
PARI
ish2(n) = hammingweight(n)==2; \\ A018900 ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 isok(m) = ish2(m) && ish2(ad(m)); \\ Michel Marcus, Oct 23 2022
Comments