cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357842 a(n) is the smallest number k for which k and the arithmetic derivative k' (A003415) have exactly n triangular divisors (A000217).

Original entry on oeis.org

2, 27, 18, 72, 612, 1764, 756, 8100, 27000, 97200, 66528, 175500, 93600, 280800, 1731600, 661500, 680400, 3704400, 34177500, 11107800, 16581600, 20065500, 108486000, 102910500, 108353700, 181912500, 314874000, 462672000, 4408236000, 229975200, 2297786400, 672348600, 925041600, 1344697200, 158230800
Offset: 1

Views

Author

Marius A. Burtea, Oct 20 2022

Keywords

Examples

			2 has only the divisor 1 = A000217(1) and 2' = 1 = A000217(1), so a(1) = 2.
27 and 27' = 27 have the divisors 1 = A000217(1), 3 = A000217(2) triangular numbers, so a(2) = 27.
		

Crossrefs

Programs

  • Magma
    tr:=func; f:=func;  a:=[]; for n in [1..30] do k:=2 ; while tr(k) ne n or tr(Floor(f(k))) ne n do k:=k+1; end while; Append(~a,k); end for; a;
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); tridiv[n_] := DivisorSum[n, 1 &, IntegerQ[Sqrt[8*# + 1]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 2, i}, While[c < len && n < nmax, i = tridiv[n]; If[i <= len && s[[i]] == 0 && tridiv[d[n]] == i, c++; s[[i]] = n]; n++]; s]; seq[10, 10^6] (* Amiram Eldar, Oct 21 2022 *)
  • PARI
    f(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ A007862
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = my(k=2); while((f(k)!=n) || (f(ad(k))!=n), k++); k; \\ Michel Marcus, Oct 23 2022