cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357852 Replace prime(k) with prime(k+2) in the prime factorization of n.

Original entry on oeis.org

1, 5, 7, 25, 11, 35, 13, 125, 49, 55, 17, 175, 19, 65, 77, 625, 23, 245, 29, 275, 91, 85, 31, 875, 121, 95, 343, 325, 37, 385, 41, 3125, 119, 115, 143, 1225, 43, 145, 133, 1375, 47, 455, 53, 425, 539, 155, 59, 4375, 169, 605, 161, 475, 61, 1715, 187, 1625, 203
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2022

Keywords

Comments

This is the same as A045966 except the first term is 1 instead of 3.

Examples

			The terms together with their prime indices begin:
    1: {}
    5: {3}
    7: {4}
   25: {3,3}
   11: {5}
   35: {3,4}
   13: {6}
  125: {3,3,3}
   49: {4,4}
   55: {3,5}
   17: {7}
  175: {3,3,4}
   19: {8}
   65: {3,6}
   77: {4,5}
  625: {3,3,3,3}
		

Crossrefs

Applying the transformation only once gives A003961.
A permutation of A007310.
Other multiplicative sequences: A064988, A064989, A357977, A357980, A357983.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Product[Prime[i+2],{i,primeMS[n]}],{n,30}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = nextprime(nextprime(f[k,1]+1)+1)); factorback(f); \\ Michel Marcus, Oct 28 2022
    
  • Python
    from math import prod
    from sympy import nextprime, factorint
    def A357852(n): return prod(nextprime(p,ith=2)**e for p, e in factorint(n).items()) # Chai Wah Wu, Oct 29 2022

Formula

a(n) = A003961(A003961(n)).