A357852 Replace prime(k) with prime(k+2) in the prime factorization of n.
1, 5, 7, 25, 11, 35, 13, 125, 49, 55, 17, 175, 19, 65, 77, 625, 23, 245, 29, 275, 91, 85, 31, 875, 121, 95, 343, 325, 37, 385, 41, 3125, 119, 115, 143, 1225, 43, 145, 133, 1375, 47, 455, 53, 425, 539, 155, 59, 4375, 169, 605, 161, 475, 61, 1715, 187, 1625, 203
Offset: 1
Examples
The terms together with their prime indices begin: 1: {} 5: {3} 7: {4} 25: {3,3} 11: {5} 35: {3,4} 13: {6} 125: {3,3,3} 49: {4,4} 55: {3,5} 17: {7} 175: {3,3,4} 19: {8} 65: {3,6} 77: {4,5} 625: {3,3,3,3}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Product[Prime[i+2],{i,primeMS[n]}],{n,30}]
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = nextprime(nextprime(f[k,1]+1)+1)); factorback(f); \\ Michel Marcus, Oct 28 2022
-
Python
from math import prod from sympy import nextprime, factorint def A357852(n): return prod(nextprime(p,ith=2)**e for p, e in factorint(n).items()) # Chai Wah Wu, Oct 29 2022
Comments