cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357879 Number of divisors of n with the same sum of prime indices as their quotient. Central column of A321144, taking gaps as 0's.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(3600) = 5 divisors, their prime indices, and the prime indices of their quotients:
  45: {2,2,3} * {1,1,1,1,3}
  50: {1,3,3} * {1,1,1,2,2}
  60: {1,1,2,3} * {1,1,2,3}
  72: {1,1,1,2,2} * {1,3,3}
  80: {1,1,1,1,3} * {2,2,3}
		

Crossrefs

Positions of nonzero terms are A357976, counted by A002219.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Table[Length[Select[Divisors[n],sumprix[#]==sumprix[n]/2&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    A357879(n) = sumdiv(n,d, A056239(d)==A056239(n/d)); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) = Sum_{d|n} [A056239(d) = A056239(n/d)], where [ ] is the Iverson bracket. - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025