A357898 a(n) is the least k such that phi(k) + d(k) = 2^n, or -1 if there is no such k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k.
1, 3, 7, 21, 31, 77, 127, 301, 783, 1133, 3399, 4781, 8191, 16637, 37367, 101601, 131071, 305837, 524287, 1073581, 3220743, 4201133, 8544103, 18404669, 34012327, 67139117, 135255431, 300528877, 824583699, 1073862029, 2147483647, 4295564381, 8603449703, 25807607829
Offset: 1
Keywords
Examples
a(3) = 7 because phi(7)+d(7) = 6+2 = 2^3, and 7 is the least number that works.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..160 (a(35)..a(38) from Martin Ehrenstein; a(39)..a(49) from David A. Corneth)
Programs
-
Maple
V:= Array(0..23): count:= 0: for n from 1 while count < 23 do s:= phi(n)+tau(n); t:= padic:-ordp(s,2); if V[t] = 0 and s = 2^t then V[t]:= n; count:= count+1; fi od: convert(V,list)[2..-1];
Extensions
a(27)-a(33) from Giorgos Kalogeropoulos, Oct 22 2022
a(34) from Martin Ehrenstein, Oct 24 2022
Comments