A357900 Number of groups of order A060702(n) with trivial center.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 6, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 5, 2, 5, 1, 1, 5, 2, 1, 2, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 1, 4, 1, 1, 17, 1, 1, 5, 1, 1, 1, 1, 8, 1, 1, 2, 1, 11, 1, 2, 2, 5, 1, 1, 1, 2, 1, 1, 3, 1, 1, 19
Offset: 1
Examples
a(2) = 1 since there is a unique group of order A060702(2) = 6 with trivial center: S3.
Links
Programs
-
GAP
IsNilpotentNumber := function(n) # if n > 1 is a nilpotent number, then no group of order n has trivial center; see also A056867 local c, omega, i, j; c := PrimePowersInt( n ); omega := Length(c)/2; for i in [1..omega] do for j in [1..c[2*i]] do if GcdInt(n, c[2*i-1]^j-1) > 1 then return false; fi; od; od; return true; end; CountTrivialCenter := function(n) # returns the number of groups of order n with trivial center local count, i; if n > 1 and IsNilpotentNumber(n) then return 0; fi; count := 0; for i in [1..NumberSmallGroups(n)] do if(Size(Center(SmallGroup(n, i))) = 1) then count:=count+1; fi; od; return count; end;
Comments