A364609 a(n) = greatest integer k such that 1/n + 1/(n + 1) + ... + 1/k < sqrt(2).
1, 5, 9, 13, 18, 22, 26, 30, 34, 38, 42, 46, 50, 55, 59, 63, 67, 71, 75, 79, 83, 87, 92, 96, 100, 104, 108, 112, 116, 120, 124, 129, 133, 137, 141, 145, 149, 153, 157, 161, 166, 170, 174, 178, 182, 186, 190, 194, 198, 203, 207, 211, 215, 219, 223, 227, 231
Offset: 1
Keywords
Examples
a(3) = 9 because 1/3 + 1/4 + ... + 1/9 < sqrt(2) < 1/3 + 1/4 + ... + 1/10.
Programs
-
Mathematica
r = Sqrt[2]; h[n_] := HarmonicNumber[n]; a[n_] : = Select[Range[500], h[#] <= r + h[n - 1] < h[# + 1] & ] Flatten[Table[a[n], {n, 1, 70}]]
-
PARI
a(n) = my(k=0); while (sum(i=n, n+k, 1/i)^2 < 2, k++); n+k-1; \\ Michel Marcus, Sep 08 2023
-
Python
from itertools import accumulate, count from fractions import Fraction def A364609(n): return next(x[0]+n-1 for x in enumerate(accumulate(Fraction(1,k) for k in count(n))) if x[1]**2 >= 2) # Chai Wah Wu, Sep 07 2023
Comments