A357950 Maximum period of an elementary cellular automaton in a cyclic universe of width n.
2, 2, 6, 8, 30, 18, 126, 40, 504, 430, 979, 240, 1105, 2198, 6820, 6016, 78812, 7812, 183920, 142580, 352884, 122870, 3459591, 421188, 10828525, 334308, 81688176, 989212, 463347935, 5921860, 1211061438, 26636800, 3315517623, 187950912, 24752893585
Offset: 1
Keywords
Examples
Examples of rules and initial states that give the maximum period: n a(n) rule initial state -------------------------------- 1 2 1 0 2 2 1 00 3 6 14 001 4 8 3 0001 5 30 45 00001 6 18 45 000001 7 126 45 0000001 8 40 30 00000001 9 504 45 000000001 10 430 45 0000000001 11 979 45 00000000001 12 240 45 000000100001 13 1105 45 0000000001011 14 2198 45 00000000000001 15 6820 75 000000000000001 16 6016 30 0000000000000001 17 78812 45 00000000000000001 18 7812 75 000000000000000001
Links
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Wikipedia, Elementary cellular automaton.
- Index entries for sequences related to cellular automata
Crossrefs
Cf. A334499.
Formula
a(n) >= A334499(n). Equality holds (i.e., the maximum period can be achieved with a single cell initially on) for all n <= 35, except n = 12, 13, 23, 24, 25, 26, 28, 34.
Trivially a(n) <= 2^n. - Charles R Greathouse IV, Nov 09 2022
Extensions
a(19)-a(35) from Bert Dobbelaere, Oct 30 2022
Corrected a(23), a(25), a(26) and a(34) by Bert Dobbelaere, Nov 11 2022