A357955 a(n) = 3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n).
37, 60, 108, 60, -660, 60, 82404, 1411848, 17540460, 191318820, 1952058108, 19175376324, 184118073828, 1743153802320, 16359157606200, 152693295412560, 1420516291306860, 13190159377278324, 122358232382484420, 1134645084249344400, 10522118980232969340
Offset: 0
Examples
Examples of supercongruences: a(11) - a(1) = 19175376324 - 60 = (2^3)*3*(11^7)*41 == 0 (mod 11^7). a(5^2) - a(5) = 726506045044361132812560 - 60 = (2^2)*3*(5^11)*41*30241552444123 == 0 (mod 5^11).
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- R. R. Aidagulov and M. A. Alekseyev, On p-adic approximation of sums of binomial coefficients, Journal of Mathematical Sciences 233:5 (2018), 626-634; arXiv:1602.02632 [math.NT], 2018.
- C. Helou and G. Terjanian, On Wolstenholme’s theorem and its converse, J. Number Theory 128 (2008), 475-499.
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv preprint arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
seq(3*binomial(4*n,n) - 20*binomial(3*n,n) + 54*binomial(2*n,n), n = 0..20);
-
Mathematica
A357955[n_] := 3*Binomial[4*n, n] - 20*Binomial[3*n, n] + 54*Binomial[2*n, n]; Array[A357955, 25, 0] (* Paolo Xausa, Jul 17 2024 *)
-
Python
from math import comb def A357955(n): return 54*comb(m:=n<<1,n)+3*comb(m<<1,n)-20*comb(m+n,n) # Chai Wah Wu, Oct 24 2022
Formula
a(k*p^r) == a(k*p^(r-1)) ( mod p^(3*r) ) for positive integers k and r and for all primes p >= 5 (see Meštrović, Section 6, equation 39).
a(p) == a(1) (mod p^6) for all primes p >= 7 (apply Helou and Terjanian, Section 3, Proposition 2).
From Stefano Spezia, Jul 17 2024: (Start)
G.f.: 54/sqrt(1-4*x) - 40*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x) + 3*hypergeom([1/4, 1/2, 3/4], [1/3, 2/3], 4^4*x/3^3).
E.g.f.: 54*exp(2*x)*BesselI(0, 2*x) - 20*hypergeom([1/3, 2/3], [1/2, 1], 27*x/4) + 3*hypergeom([1/4, 1/2, 3/4], [1/3, 2/3, 1], 4^4*x/3^3).
a(n) ~ exp(2*n*arctanh(229/283))*sqrt(6/(n*Pi)). (End)
Comments