A357958 a(n) = 5*A005259(n) + 14*A005258(n-1).
39, 407, 7491, 167063, 4112539, 107461667, 2923006251, 81853622423, 2343591359499, 68288538877907, 2018394003648391, 60366962358086243, 1823569260750104179, 55557874330437332267, 1705172670555862322491, 52672612525369663916183
Offset: 1
Examples
Examples of supercongruences: a(13) - a(1) = 1823569260750104179 - 39 = (2^2)*5*7*(13^5)*35081444357 == 0 (mod 13^5). a(7^2) - a(7) = (2^3)*(7^9)* 10412078726049425470554760052126170543547100055154203726400782433 == 0 (mod 7^9).
Programs
-
Maple
seq( add( 5*binomial(n,k)^2*binomial(n+k,k)^2 + 14*binomial(n-1,k)^2* binomial(n+k-1,k), k = 0..n ), n = 1..20);
Formula
a(n) = 5*Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2 + 14*Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k).
a(p^r) == a(p^(r-1)) ( mod p^(3*r) ) for positive integer r and for all primes p >= 5.
Comments