cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A228179 Irregular table where the n-th row consists of the square roots of 1 in Z_n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 3, 5, 7, 1, 8, 1, 9, 1, 10, 1, 5, 7, 11, 1, 12, 1, 13, 1, 4, 11, 14, 1, 7, 9, 15, 1, 16, 1, 17, 1, 18, 1, 9, 11, 19, 1, 8, 13, 20, 1, 21, 1, 22, 1, 5, 7, 11, 13, 17, 19, 23, 1, 24, 1, 25, 1, 26, 1, 13, 15, 27, 1, 28, 1, 11
Offset: 2

Views

Author

Tom Edgar, Aug 20 2013

Keywords

Comments

Each 1 starts a new row.
This is a subsequence of A020652.
Row n has A060594(n) entries.
Each row forms a subgroup of the multiplicative group of units of Z_n.

Examples

			The table starts out as follows:
  1
  1 2
  1 3
  1 4
  1 5
  1 6
  1 3 5 7
  1 8
  1 9
  1 10
  1 5 7 11
  ...
		

Crossrefs

Cf. A070667 (second column), A358016 (second-last column).
Cf. A277776 (nontrivial square roots of 1).

Programs

  • Maple
    T:= n-> seq(`if`(k&^2 mod n=1, k, NULL), k=1..n-1):
    seq(T(n), n=2..50);  # Alois P. Heinz, Aug 20 2013
  • Mathematica
    Flatten[Table[Position[Mod[Range[n]^2, n], 1], {n, 2, 50}]] (* T. D. Noe, Aug 20 2013 *)
  • Python
    from itertools import chain, count, islice
    from sympy.ntheory import sqrt_mod_iter
    def A228179_gen(): # generator of terms
        return chain.from_iterable((sorted(sqrt_mod_iter(1,n)) for n in count(2)))
    A228179_list = list(islice(A228179_gen(),30)) # Chai Wah Wu, Oct 26 2022
  • Sage
    [[i for i in [1..k-1] if (i*i).mod(k)==1] for k in [2..n]] #changing n gives you the table up to the n-th row.
    
Showing 1-1 of 1 results.