cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358035 a(n) = (8*n^3 + 12*n^2 + 4*n - 9)/3.

Original entry on oeis.org

5, 37, 109, 237, 437, 725, 1117, 1629, 2277, 3077, 4045, 5197, 6549, 8117, 9917, 11965, 14277, 16869, 19757, 22957, 26485, 30357, 34589, 39197, 44197, 49605, 55437, 61709, 68437, 75637, 83325, 91517, 100229, 109477, 119277, 129645, 140597, 152149, 164317
Offset: 1

Views

Author

Sela Fried, Oct 26 2022

Keywords

Comments

Conjecture: a(n) is the disorder number of the Aztec diamond of size n.

References

  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge University Press, 2004.

Crossrefs

Cf. A354528.

Programs

  • Mathematica
    Table[(8n^3+12n^2+4n-9)/3,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{5,37,109,237},40] (* Harvey P. Dale, Nov 20 2022 *)
  • Python
    def A358035(n): return n*(n*((n<<3) + 12) + 4)//3 - 3 # Chai Wah Wu, Oct 31 2022

Formula

G.f.: x*(5 + 17*x - 9*x^2 + 3*x^3)/(1 - x)^4. - Stefano Spezia, Oct 26 2022