A358563 The number of maximal antichains in the Tamari lattice of order n.
1, 2, 4, 26, 1979, 161117453
Offset: 1
Examples
The line (Hasse) diagram of the Tamari lattice for n=3 is ((ab)c)d / \ (a(bc))d (ab)(cd) | / a((bc)d) / \ / a(b(cd)) with the a(3)=4 maximal antichains {((ab)c)d}, {(ab)(cd), (a(bc))d}, {(ab)(cd), a((bc)d)}, {a(b(cd))}.
References
- D. Tamari, The algebra of bracketings and their enumeration, Nieuw Archief voor Wiskunde, Series 3, 10 (1962), 131-146.
Links
- S. Huang and D. Tamari, Problems of associativity: A simple proof for the lattice property of systems ordered by a semi-associative law, J. of Comb. Theory, Series A, 13 (1972), 7-13.
- Dmitry I. Ignatov, Supporting iPython code and input files for counting (maximal) antichains of the Tamari partition lattice up to n=5, Github repository.
- Wikipedia, Tamari lattice
Crossrefs
Cf. A358562 (number of antichains in the Tamari lattice).
Cf. A326358 (number of maximal antichains in the Boolean lattice).
Cf. A358041 (number of maximal antichains in the lattice of set partitions of an n-element set).
Cf. A358390 (number of maximal antichains in the Kreweras lattice of non-crossing set partitions).
Cf. A143674 (number of maximal antichains in the lattice of Dyck paths).
Comments