A358049 a(1) = 2, a(2) = 3; afterwards a(n) is least new prime > a(n-1) such that a(n-2) + a(n) and a(n-1) + a(n) are semiprimes.
2, 3, 7, 19, 67, 127, 151, 271, 463, 823, 883, 991, 1051, 1087, 2011, 2251, 2311, 2371, 2383, 2731, 2803, 2971, 3271, 3391, 3643, 3823, 4111, 4483, 6343, 6379, 6763, 7879, 8443, 9199, 9283, 9643, 10159, 10639, 10867, 10939, 11047, 11299, 11467, 11587, 11971, 12511, 12583, 14071
Offset: 1
Keywords
Examples
2 + 7 = 9 = 3*3 and 3 + 7 = 10 = 2*5 are semiprimes.
Programs
-
Mathematica
Do[While[MemberQ[s, p] || 2 != PrimeOmega[s[[-2]] + p] || 2 != PrimeOmega[s[[-1]] + p], p = NextPrime[p]]; AppendTo[s, p], {60}]; s
-
PARI
issp(n) = bigomega(n) == 2; \\ A001358 lista(nn) = my(va = vector(nn)); va[1] = 2; va[2] = 3; for (n=3, nn, my(p=nextprime(va[n-1]+1)); while (!issp(va[n-2]+p) || !issp(va[n-1]+p), p = nextprime(p+1)); va[n] = p;); va; \\ Michel Marcus, Nov 14 2022
Comments