A358077 Sum of the nonprime divisors of n whose divisor complement is squarefree.
1, 1, 1, 4, 1, 7, 1, 12, 9, 11, 1, 22, 1, 15, 16, 24, 1, 33, 1, 34, 22, 23, 1, 48, 25, 27, 36, 46, 1, 62, 1, 48, 34, 35, 36, 72, 1, 39, 40, 72, 1, 84, 1, 70, 69, 47, 1, 96, 49, 85, 52, 82, 1, 108, 56, 96, 58, 59, 1, 142, 1, 63, 93, 96, 66, 128, 1, 106, 70, 130, 1, 144, 1, 75
Offset: 1
Keywords
Examples
a(8) = 12. The nonprime divisors of 8 whose divisor complements are squarefree are 4 and 8 and their sum is 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
a[n_] := DivisorSum[n, # &, ! PrimeQ[#] && SquareFreeQ[n/#] &]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
-
PARI
a(n) = sumdiv(n, d, if (!isprime(d) && issquarefree(n/d), d)); \\ Michel Marcus, Oct 30 2022
Formula
a(n) = Sum_{d|n, nonprime d, n/d squarefree} d.