A359200 Triangle read by rows: T(n, k) = A358125(n,k)*binomial(n-1, k), 0 <= k <= n-1.
0, 1, 1, 3, 8, 3, 7, 30, 30, 7, 15, 88, 144, 88, 15, 31, 230, 520, 520, 230, 31, 63, 564, 1620, 2240, 1620, 564, 63, 127, 1330, 4620, 8120, 8120, 4620, 1330, 127, 255, 3056, 12432, 26432, 33600, 26432, 12432, 3056, 255, 511, 6894, 32112, 79968, 122976, 122976, 79968, 32112, 6894, 511
Offset: 1
Examples
Triangle begins: 0; 1, 1; 3, 8, 3; 7, 30, 30, 7; 15, 88, 144, 88, 15; 31, 230, 520, 520, 230, 31; 63, 564, 1620, 2240, 1620, 564, 63; 127, 1330, 4620, 8120, 8120, 4620, 1330, 127; 255, 3056, 12432, 26432, 33600, 26432, 12432, 3056, 255; 511, 6894, 32112, 79968, 122976, 122976, 79968, 32112, 6894, 511; 1023, 15340, 80460, 229440, 413280, 499968, 413280, 229440, 80460, 15340, 1023; ...
Crossrefs
Row sums give 2*A005061(n-1).
Programs
-
Maple
T := n -> local k; seq((2^n - 2^(n - k - 1) - 2^k)*binomial(n - 1, k), k = 0 .. n - 1); seq(T(n), n = 1 .. 11);
-
Mathematica
T[n_, k_] := (2^n - 2^(n - k - 1) - 2^k)*Binomial[n - 1, k]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Amiram Eldar, Dec 20 2022 *)
Formula
T(n, k) = (2^n - 2^(n-k-1) - 2^k)*binomial(n-1, k), for n >= 1 and 0 <= k <= n-1.
Comments