cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358126 Replace 2^k in binary expansion of n with 2^(2^k).

Original entry on oeis.org

0, 2, 4, 6, 16, 18, 20, 22, 256, 258, 260, 262, 272, 274, 276, 278, 65536, 65538, 65540, 65542, 65552, 65554, 65556, 65558, 65792, 65794, 65796, 65798, 65808, 65810, 65812, 65814, 4294967296, 4294967298, 4294967300
Offset: 0

Views

Author

Tilman Piesk, Oct 30 2022

Keywords

Comments

Sums of distinct terms of A001146.
The name "ballooned integers" is proposed for this sequence.
a(n) is the index of the first occurrence of n in A253315.

Examples

			Let    n   =     25  =  1 +   8 +    16  =     2^0  +    2^3  +    2^4.
Then a(n)  =  65794  =  2 + 256 + 65536  =  2^(2^0) + 2^(2^3) + 2^(2^4).
The binary indices of n are {0, 3, 4}. Those of a(n) are {1, 8, 16}.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(d -> d[2] <> 0, ListTools:-Enumerate(convert(n,base,2))):
    add(2^(2^(%[j][1] - 1)), j = 1..nops(%)) end: seq(a(n), n = 0..34); # Peter Luschny, Oct 31 2022
  • Mathematica
    a[n_] := Total[2^(2^Range[If[n == 0, 1, IntegerLength[n,2]] - 1, 0, -1]) * IntegerDigits[n, 2]]; Array[a, 35, 0] (* Amiram Eldar, Oct 31 2022 *)
  • PARI
    a(n) = my(d=Vecrev(digits(n,2))); for (k=1, #d, d[k] *= 2^(2^(k-1))); vecsum(d); \\ Michel Marcus, Oct 31 2022
  • Python
    def a(n):
        binary_string = "{0:b}".format(n)[::-1]  # little-endian
        result = 0
        for i, binary_digit in enumerate(binary_string):
            if binary_digit == '1':
                result += 1 << (1 << i)  # 2 ** (2 ** i)
        return result
    

Formula

If n = Sum_{i=0..k} 2^s_i, then a(n) = Sum_{i=0..k} 2^(2^s_i).
a(n) = 2 * A253317(n+1).
a(2^n-1) = A060803(n-1) for n >= 1.
a(2^n) = A001146(n).
A197819[m, a(n)] = A228539[m, n]. (Compare link about Boolean Walsh functions.)