A358144 Number of strict closure operators on a set of n elements such that all pairs of distinct points can be separated by clopen sets.
1, 1, 1, 4, 167, 165791, 19194240969
Offset: 0
Examples
The a(3) = 4 set-systems of closed sets: {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
References
- G. M. Bergman. Lattices, Closure Operators, and Galois Connections. Springer, Cham. 2015. 173-212 in "An Invitation to General Algebra and Universal Constructions", Springer, (2015).
Links
- Victor Chepoi, Separation of Two Convex Sets in Convexity Structures
- Wikipedia, Closure operator
Programs
-
Mathematica
SeparatedPairQ[F_, n_] := AllTrue[ Subsets[Range[n], {2}], MemberQ[F, _?(H |-> With[{H1 = Complement[Range[n], H]}, MemberQ[F, H1] && MemberQ[H, #[[1]] ] && MemberQ[H1, #[[2]] ]])] &]; Table[Length@Select[Select[ Subsets[Subsets[Range[n]]], And[ MemberQ[#, {}], MemberQ[#, Range[n]], SubsetQ[#, Intersection @@@ Tuples[#, 2]]] & ], SeparatedPairQ[#, n] &] , {n, 0, 4}]
Extensions
a(5) from Christian Sievers, Feb 04 2024
a(6) from Christian Sievers, Jun 13 2024
Comments