A358183 Decimal expansion of the real root of 2*x^3 + x^2 - x - 1.
8, 2, 9, 4, 8, 3, 5, 4, 0, 9, 5, 8, 4, 9, 7, 0, 3, 9, 6, 7, 3, 3, 8, 7, 5, 7, 8, 3, 9, 2, 0, 0, 7, 8, 0, 7, 6, 2, 1, 9, 9, 6, 6, 7, 2, 2, 8, 1, 3, 8, 8, 5, 5, 0, 1, 7, 6, 1, 0, 7, 7, 4, 4, 4, 9, 2, 0, 8, 4, 0, 1, 0, 3, 9, 0, 1
Offset: 0
Examples
0.82948354095849703967338757839200780762199667228138855017610774449208401039...
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
RealDigits[x /. FindRoot[2*x^3 + x^2 - x - 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Nov 08 2022 *) RealDigits[Root[2x^3+x^2-x-1,1],10,120][[1]] (* Harvey P. Dale, Jun 08 2025 *)
-
PARI
(-1/6) + (2^(2/3)*11^(1/3))/3 * hypergeom([-1/6,1/3],[1/2],1593/1936) \\ Michel Marcus, Nov 08 2022
Formula
r = (-1 + (44 + 3*sqrt(177))^(1/3) + 7*(44 + 3*sqrt(177))^(-1/3))/6.
r = (-1 + (44 + 3*sqrt(177))^(1/3) + (44 - 3*sqrt(177))^(1/3))/6.
r = (-1 + 2*sqrt(7)*cosh((1/3)*arccosh((44/49)*sqrt(7))))/6.
r = (-1/6) + (2^(2/3)*11^(1/3))/3 * Hyper2F1([-1/6,1/3],[1/2],1593/1936). - Gerry Martens, Nov 08 2022
Comments