cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358183 Decimal expansion of the real root of 2*x^3 + x^2 - x - 1.

Original entry on oeis.org

8, 2, 9, 4, 8, 3, 5, 4, 0, 9, 5, 8, 4, 9, 7, 0, 3, 9, 6, 7, 3, 3, 8, 7, 5, 7, 8, 3, 9, 2, 0, 0, 7, 8, 0, 7, 6, 2, 1, 9, 9, 6, 6, 7, 2, 2, 8, 1, 3, 8, 8, 5, 5, 0, 1, 7, 6, 1, 0, 7, 7, 4, 4, 4, 9, 2, 0, 8, 4, 0, 1, 0, 3, 9, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2022

Keywords

Comments

This equals r0 - 1/6 where r0 is the real root of y^3 - (7/12)*y - 11/27.
The other (complex) roots of 2*x^3 + x^2 - x - 1 are (-1 + w1*(44 + 3*sqrt(177))^(1/3) + w2*(44 - 3*sqrt(177))^(1/3))/6 = -0.6647417704... + 0.4011272787...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (-1 - sqrt(7)*(cosh((1/3)*arccosh((44/49)*sqrt(7))) - sqrt(3)*sinh((1/3)*arccosh((44/49)*sqrt(7)))*i))/6, and its complex conjugate.

Examples

			0.82948354095849703967338757839200780762199667228138855017610774449208401039...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[2*x^3 + x^2 - x - 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Nov 08 2022 *)
    RealDigits[Root[2x^3+x^2-x-1,1],10,120][[1]] (* Harvey P. Dale, Jun 08 2025 *)
  • PARI
    (-1/6) + (2^(2/3)*11^(1/3))/3 * hypergeom([-1/6,1/3],[1/2],1593/1936) \\ Michel Marcus, Nov 08 2022

Formula

r = (-1 + (44 + 3*sqrt(177))^(1/3) + 7*(44 + 3*sqrt(177))^(-1/3))/6.
r = (-1 + (44 + 3*sqrt(177))^(1/3) + (44 - 3*sqrt(177))^(1/3))/6.
r = (-1 + 2*sqrt(7)*cosh((1/3)*arccosh((44/49)*sqrt(7))))/6.
r = (-1/6) + (2^(2/3)*11^(1/3))/3 * Hyper2F1([-1/6,1/3],[1/2],1593/1936). - Gerry Martens, Nov 08 2022

A358184 Decimal expansion of the real root of 2*x^3 - x^2 + x - 1.

Original entry on oeis.org

7, 3, 8, 9, 8, 3, 6, 2, 1, 5, 0, 4, 5, 0, 6, 2, 3, 7, 3, 2, 3, 4, 6, 2, 5, 4, 0, 6, 7, 1, 0, 8, 7, 5, 5, 0, 7, 2, 3, 7, 7, 4, 7, 7, 6, 3, 7, 9, 0, 9, 6, 7, 2, 2, 1, 1, 7, 9, 5, 4, 9, 6, 9, 3, 0, 2, 3, 0, 2, 0, 3, 1, 5, 9, 8, 0
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2022

Keywords

Comments

This equals r0 - 1/6 where r0 is the real root of y^3 - (7/12)*y - 11.
The other (complex) roots of 2*x^3 - x^2 + x - 1 are (1 + w1*(46 + 3*sqrt(249))^(1/3) + (46 - 3*sqrt(249))^(1/3))/6 = -0.1194918107... + 0.8138345589...*i, and its conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) is one of the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (1 - sqrt(5)*(sinh((1/3)*arcsinh((46/25)*sqrt(5))) - sqrt(3)*cosh((1/3)*arcsinh((46/25)*sqrt(5)))*i))/6, and its complex conjugate.

Examples

			0.73898362150450623732346254067108755072377477637909672211795496930230203...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[2*x^3 - x^2 + x - 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Nov 08 2022 *)
    RealDigits[Root[-1+x-x^2+2 x^3,1],10,120][[1]] (* Harvey P. Dale, Sep 09 2023 *)

Formula

r = (1 + (46 + 3*sqrt(249))^(1/3) - 5*(46+3*sqrt(249))^(-1/3))/6.
r = (1+ (46 + 3*sqrt(249))^(1/3) + w1*(46 - 3*sqrt(249))^(1/3))/6, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3).
r = (1 + 2*sqrt(5)*sinh((1/3)*arcsinh((46/25)*sqrt(5))))/6.
r = (1/6) + (46/45)*Hyper2F1([1/3, 2/3],[3/2], -(46^2/5^3)). - Gerry Martens, Nov 08 2022
Showing 1-2 of 2 results.