A358194 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partial sums summing to k, where k ranges from n to n(n+1)/2.
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 2 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 For example, the T(15,59) = 5 partitions are: (8,2,2,2,1), (7,3,3,1,1), (6,5,2,1,1), (4,3,2,2,2,2), (3,3,3,3,2,1).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==k&]],{n,0,8},{k,n,n*(n+1)/2}]
Comments