cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A053632 Irregular triangle read by rows giving coefficients in expansion of Product_{k=1..n} (1 + x^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4
Offset: 0

Views

Author

N. J. A. Sloane, Mar 22 2000

Keywords

Comments

Or, triangle T(n,k) read by rows, giving number of subsets of {1,2,...,n} with sum k. - Roger CUCULIERE (cuculier(AT)imaginet.fr), Nov 19 2000
Row n consists of A000124(n) terms. These are also the successive vectors (their nonzero elements) when one starts with the infinite vector (of zeros) with 1 inserted somewhere and then shifts it one step (right or left) and adds to the original, then shifts the result two steps and adds, three steps and adds, etc. - Antti Karttunen, Feb 13 2002
T(n,k) = number of partitions of k into distinct parts <= n. Triangle of distribution of Wilcoxon's signed rank statistic. - Mitch Harris, Mar 23 2006
T(n,k) = number of binary words of length n in which the sum of the positions of the 0's is k. Example: T(4,5)=2 because we have 0110 (sum of the positions of the 0's is 1+4=5) and 1001 (sum of the positions of the 0's is 2+3=5). - Emeric Deutsch, Jul 23 2006
A fair coin is flipped n times. You receive i dollars for a "success" on the i-th flip, 1<=i<=n. T(n,k)/2^n is the probability that you will receive exactly k dollars. Your expectation is n(n+1)/4 dollars. - Geoffrey Critzer, May 16 2010
From Gus Wiseman, Jan 02 2023: (Start)
With offset 1, also the number of integer compositions of n whose partial sums add up to k for k = n..n(n+1)/2. For example, row n = 6 counts the following compositions:
6 15 24 33 42 51 141 231 321 411 1311 2211 3111 12111 21111 111111
114 123 132 222 312 1131 1221 2121 11121 11211
213 1113 1122 1212 2112 1111
(End)

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1, 1;
  1, 1, 1, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1;
  1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1;
  ...
Row n = 4 counts the following binary words, where k = sum of positions of zeros:
  1111  0111  1011  0011  0101  0110  0001  0010  0100  1000  0000
                    1101  1110  1001  1010  1100
Row n = 5 counts the following strict partitions of k with all parts <= n (0 is the empty partition):
  0  1  2  3  4  5  42  43  53  54  532  542  543  5431 5432 54321
           21 31 32 51  52  431 432 541  5321 5421
                 41 321 421 521 531 4321
		

References

  • A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.

Crossrefs

Rows reduced modulo 2 and interpreted as binary numbers: A068052, A068053. Rows converge towards A000009.
Row sums give A000079.
Cf. A285101 (multiplicative encoding of each row), A285103 (number of odd terms on row n), A285105 (number of even terms).
Row lengths are A000124.
A reciprocal version is (A033999, A219977, A291983, A291984, A291985, ...).
A negative version is A231599.
A version for partitions is A358194, reversed partitions A264034.

Programs

  • Maple
    with(gfun,seriestolist); map(op,[seq(seriestolist(series(mul(1+(z^i), i=1..n),z,binomial(n+1,2)+1)), n=0..10)]); # Antti Karttunen, Feb 13 2002
    # second Maple program:
    g:= proc(n) g(n):= `if`(n=0, 1, expand(g(n-1)*(1+x^n))) end:
    T:= n-> seq(coeff(g(n), x, k), k=0..degree(g(n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 19 2012
  • Mathematica
    Table[CoefficientList[ Series[Product[(1 + t^i), {i, 1, n}], {t, 0, 100}], t], {n, 0, 8}] // Grid (* Geoffrey Critzer, May 16 2010 *)

Formula

From Mitch Harris, Mar 23 2006: (Start)
T(n,k) = T(n-1, k) + T(n-1, k-n), T(0,0)=1, T(0,k) = 0, T(n,k) = 0 if k < 0 or k > (n+1 choose 2).
G.f.: (1+x)*(1+x^2)*...*(1+x^n). (End)
Sum_{k>=0} k * T(n,k) = A001788(n). - Alois P. Heinz, Feb 09 2017
max_{k>=0} T(n,k) = A025591(n). - Alois P. Heinz, Jan 20 2023

A320387 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nonincreasing, and first difference <= first part.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 5, 3, 5, 7, 4, 7, 8, 6, 8, 11, 7, 9, 13, 9, 11, 16, 12, 15, 18, 13, 17, 20, 17, 21, 24, 19, 24, 30, 22, 28, 34, 26, 34, 38, 30, 37, 43, 37, 42, 48, 41, 50, 58, 48, 55, 64, 53, 64, 71, 59, 73, 81, 69, 79, 89, 79, 90, 101, 87, 100, 111
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Generating function of the "second integrals" of partitions: given a partition (p_1, ..., p_s) written in weakly decreasing order, write the sequence B = (b_1, b_2, ..., b_s) = (p_1, p_1 + p_2, ..., p_1 + ... + p_s). The sequence gives the coefficients of the generating function summing q^(b_1 + ... + b_s) over all partitions of all nonnegative integers. - William J. Keith, Apr 23 2022
From Gus Wiseman, Jan 17 2023: (Start)
Equivalently, a(n) is the number of multisets (weakly increasing sequences of positive integers) with weighted sum n. For example, the Heinz numbers of the a(0) = 1 through a(15) = 7 multisets are:
1 2 3 4 7 6 8 10 15 12 16 18 20 26 24 28
5 11 9 17 19 14 21 22 27 41 30 32
13 23 29 31 33 55 39 34
25 35 37 43 45
49 77 47
65
121
These multisets are counted by A264034. The reverse version is A007294. The zero-based version is A359678.
(End)

Examples

			There are a(29) = 15 such partitions of 29:
  01: [29]
  02: [10, 19]
  03: [11, 18]
  04: [12, 17]
  05: [13, 16]
  06: [14, 15]
  07: [5, 10, 14]
  08: [6, 10, 13]
  09: [6, 11, 12]
  10: [7, 10, 12]
  11: [8, 10, 11]
  12: [3, 6, 9, 11]
  13: [5, 7, 8, 9]
  14: [2, 4, 6, 8, 9]
  15: [3, 5, 6, 7, 8]
There are a(30) = 18 such partitions of 30:
  01: [30]
  02: [10, 20]
  03: [11, 19]
  04: [12, 18]
  05: [13, 17]
  06: [14, 16]
  07: [5, 10, 15]
  08: [6, 10, 14]
  09: [6, 11, 13]
  10: [7, 10, 13]
  11: [7, 11, 12]
  12: [8, 10, 12]
  13: [3, 6, 9, 12]
  14: [9, 10, 11]
  15: [4, 7, 9, 10]
  16: [2, 4, 6, 8, 10]
  17: [6, 7, 8, 9]
  18: [4, 5, 6, 7, 8]
		

Crossrefs

Number of appearances of n > 0 in A304818, reverse A318283.
A053632 counts compositions by weighted sum.
A358194 counts partitions by weighted sum, reverse A264034.
Weighted sum of prime indices: A359497, A359676, A359682, A359754, A359755.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    Table[Length[Select[Range[2^n],ots[prix[#]]==n&]],{n,10}] (* Gus Wiseman, Jan 17 2023 *)
  • PARI
    seq(n)={Vec(sum(k=1, (sqrtint(8*n+1)+1)\2, my(t=binomial(k,2)); x^t/prod(j=1, k-1, 1 - x^(t-binomial(j,2)) + O(x^(n-t+1)))))} \\ Andrew Howroyd, Jan 22 2023
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320387(n)
      (0..n).map{|i| f(i)}
    end
    p A320387(50)
    

Formula

G.f.: Sum_{k>=1} x^binomial(k,2)/Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2))). - Andrew Howroyd, Jan 22 2023

A359678 Number of multisets (finite weakly increasing sequences of positive integers) with zero-based weighted sum (A359674) equal to n > 0.

Original entry on oeis.org

1, 2, 4, 4, 6, 9, 8, 10, 14, 13, 16, 21, 17, 22, 28, 23, 30, 37, 30, 38, 46, 38, 46, 59, 46, 55, 70, 59, 70, 86, 67, 81, 96, 84, 98, 115, 95, 114, 135, 114, 132, 158, 127, 156, 178, 148, 176, 207, 172, 201, 227, 196, 228, 270, 222, 255, 296, 255, 295, 338, 278
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The a(1) = 1 through a(8) = 10 multisets:
  {1,1}  {1,2}  {1,3}    {1,4}  {1,5}    {1,6}      {1,7}    {1,8}
         {2,2}  {2,3}    {2,4}  {2,5}    {2,6}      {2,7}    {2,8}
                {3,3}    {3,4}  {3,5}    {3,6}      {3,7}    {3,8}
                {1,1,1}  {4,4}  {4,5}    {4,6}      {4,7}    {4,8}
                                {5,5}    {5,6}      {5,7}    {5,8}
                                {1,1,2}  {6,6}      {6,7}    {6,8}
                                         {1,2,2}    {7,7}    {7,8}
                                         {2,2,2}    {1,1,3}  {8,8}
                                         {1,1,1,1}           {1,2,3}
                                                             {2,2,3}
		

Crossrefs

The one-based version is A320387.
Number of appearances of n > 0 in A359674.
The sorted minimal ranks are A359675, reverse A359680.
The minimal ranks are A359676, reverse A359681.
The maximal ranks are A359757.
A053632 counts compositions by zero-based weighted sum.
A124757 gives zero-based weighted sums of standard compositions, rev A231204.

Programs

  • Mathematica
    zz[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&GreaterEqual @@ Differences[Append[#,0]]&];
    Table[Sum[Append[z,0][[1]]-Append[z,0][[2]],{z,zz[n]}],{n,30}]
  • PARI
    seq(n)={Vec(sum(k=2, (sqrtint(8*n+1)+1)\2, my(t=binomial(k, 2)); x^t/((1-x^t)*prod(j=1, k-1, 1 - x^(t-binomial(j, 2)) + O(x^(n-t+1))))))} \\ Andrew Howroyd, Jan 22 2023

Formula

G.f.: Sum_{k>=2} x^binomial(k,2)/((1 - x^binomial(k,2))*Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2)))). - Andrew Howroyd, Jan 22 2023

A264034 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A161680(n)) is the number of integer partitions of n with weighted sum k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 3, 2, 1
Offset: 0

Views

Author

Christian Stump, Nov 01 2015

Keywords

Comments

Row sums give A000041.
The weighted sum is given by the sum of the rows where row i is weighted by i.
Note that the first part has weight 0. This statistic (zero-based weighted sum) is ranked by A359677, reverse A359674. Also the number of partitions of n with one-based weighted sum n + k. - Gus Wiseman, Jan 10 2023

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1,1;
  1,1,0,1;
  1,1,1,1,0,0,1;
  1,1,1,1,1,0,1,0,0,0,1;
  1,1,1,2,1,0,2,1,0,0,1,0,0,0,0,1;
  1,1,1,2,1,1,2,1,0,1,1,1,0,0,0,1,0,0,0,0,0,1;
  1,1,1,2,2,1,2,2,1,1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1;
  ...
The a(15,31) = 5 partitions of 15 with weighted sum 31 are: (6,2,2,1,1,1,1,1), (5,4,1,1,1,1,1,1), (5,2,2,2,2,1,1), (4,3,2,2,2,2), (3,3,3,3,2,1). These are also the partitions of 15 with one-based weighted sum 46. - _Gus Wiseman_, Jan 09 2023
		

Crossrefs

Row sums are A000041.
The version for compositions is A053632, ranked by A124757 (reverse A231204).
Row lengths are A152947, or A161680 plus 1.
The one-based version is also A264034, if we use k = n..n(n+1)/2.
The reverse version A358194 counts partitions by sum of partial sums.
A359677 gives zero-based weighted sum of prime indices, reverse A359674.
A359678 counts multisets by zero-based weighted sum.

Programs

  • Maple
    b:= proc(n, i, w) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, w)+
          `if`(i>n, 0, x^(w*i)*b(n-i, i, w+1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 01 2015
  • Mathematica
    b[n_, i_, w_] := b[n, i, w] = Expand[If[n == 0, 1, If[i < 1, 0, b[n, i - 1, w] + If[i > n, 0, x^(w*i)*b[n - i, i, w + 1]]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==k&]],{n,0,8},{k,n,n*(n+1)/2}] (* Gus Wiseman, Jan 09 2023 *)

Formula

From Alois P. Heinz, Jan 20 2023: (Start)
max_{k=0..A161680(n)} T(n,k) = A337206(n).
Sum_{k=0..A161680(n)} k * T(n,k) = A066185(n). (End)

A161511 Number of 1...0 pairs in the binary representation of 2n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 5, 5, 6, 5, 7, 6, 7, 5, 8, 7, 8, 6, 9, 7, 8, 5, 6, 6, 7, 6, 8, 7, 8, 6, 9, 8, 9, 7, 10, 8, 9, 6, 10, 9, 10, 8, 11, 9, 10, 7, 12, 10, 11, 8, 12, 9, 10, 6, 7, 7, 8, 7, 9, 8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 7, 11, 10, 11, 9, 12, 10, 11, 8, 13, 11, 12, 9, 13
Offset: 0

Views

Author

Keywords

Comments

Row (partition) sums of A125106.
a(n) is also the weight (= sum of parts) of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017

Examples

			For n = 5, the binary representation of 2n is 1010; the 1...0 pairs are 10xx, 1xx0, and xx10, so a(5) = 3.
		

Crossrefs

Cf. A000120, A243499 (gives the corresponding products), A227183, A056239, A243503, A006068, A163511.
Sum of prime indices of A005940.
Row sums of A125106.
A reverse version is A359043, row sums of A242628.
A029837 adds up standard compositions, row sums of A066099.
A029931 adds up binary indices, row sums of A048793.

Programs

  • Mathematica
    a[0] = 0; a[n_] := If[EvenQ[n], a[n/2] + DigitCount[n/2, 2, 1], a[(n-1)/2] + 1]; Array[a, 93, 0] (* Jean-François Alcover, Sep 09 2017 *)
  • PARI
    a(n)=local(t,k);t=0;k=1;while(n>0,if(n%2==0,k++,t+=k);n\=2);t
    
  • Python
    def A161511(n):
        a, b = 0, 0
        for i, j in enumerate(bin(n)[:1:-1], 1):
            if int(j):
                a += i-b
                b += 1
        return a # Chai Wah Wu, Jul 26 2023
  • Scheme
    ;; Two variants, the recursive one requiring memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (define (A161511 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ i 1) s)) (else (loop (/ (- n 1) 2) i (+ s i))))))
    (definec (A161511 n) (cond ((zero? n) n) ((even? n) (+ (A000120 n) (A161511 (/ n 2)))) (else (+ 1 (A161511 (/ (- n 1) 2))))))
    ;; Antti Karttunen, Jun 28 2014
    

Formula

a(0) = 0; a(2n) = a(n) + A000120(n); a(2n+1) = a(n) + 1.
From Antti Karttunen, Jun 28 2014: (Start)
Can be also obtained by mapping with an appropriate permutation from the lists of partition sizes computed for other enumerations similar to A125106:
a(n) = A227183(A006068(n)).
a(n) = A056239(A005940(n+1)).
a(n) = A243503(A163511(n)). (End)
a(n) = A029931(n) - binomial(A000120(n),2). - Gus Wiseman, Jan 03 2023
a(n) = a(n - A048896(n-1)) + 1 for n>=1 (see Peter J. Taylor link). - Mikhail Kurkov, Jul 04 2025

A359755 Positions of first appearances in the sequence of weighted sums of prime indices (A304818).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 24, 26, 28, 36, 40, 46, 48, 50, 52, 56, 62, 68, 74, 76, 86, 88, 92, 94, 106, 107, 118, 122, 124, 131, 134, 136, 142, 146, 152, 158, 164, 166, 173, 178, 188, 193, 194, 199, 202, 206, 214, 218, 226, 229, 236, 239, 254
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    7: {4}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
		

Crossrefs

The version for standard compositions is A089633, zero-based A359756.
Positions of first appearances in A304818, reverse A318283.
The zero-based version is A359675, unsorted A359676.
The reverse zero-based version is A359680, unsorted A359681.
This is the sorted version of A359682, reverse A359679.
The reverse version is A359754.
A053632 counts compositions by weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    seq=Table[ots[primeMS[n]],{n,1,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]

A359042 Sum of partial sums of the n-th composition in standard order (A066099).

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 4, 7, 6, 9, 5, 8, 7, 10, 5, 9, 8, 12, 7, 11, 10, 14, 6, 10, 9, 13, 8, 12, 11, 15, 6, 11, 10, 15, 9, 14, 13, 18, 8, 13, 12, 17, 11, 16, 15, 20, 7, 12, 11, 16, 10, 15, 14, 19, 9, 14, 13, 18, 12, 17, 16, 21, 7, 13, 12, 18, 11, 17, 16, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 29th composition in standard order is (1,1,2,1), with partial sums (1,2,4,5), with sum 12, so a(29) = 12.
		

Crossrefs

See link for sequences related to standard compositions.
Each n appears A000009(n) times.
The reverse version is A029931.
Comps counted by this statistic are A053632, ptns A264034, rev ptns A358194.
This is the sum of partial sums of rows of A066099.
The version for Heinz numbers of partitions is A318283, row sums of A358136.
Row sums of A358134.
A011782 counts compositions.
A065120 gives first part of standard compositions, last A001511.
A242628 lists adjusted partial sums, ranked by A253565, row sums A359043.
A358135 gives last minus first of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[Accumulate[stc[n]]],{n,0,100}]

A359043 Sum of adjusted partial sums of the n-th composition in standard order (A066099). Row sums of A242628.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 3, 4, 6, 5, 6, 4, 5, 4, 4, 5, 8, 7, 9, 6, 8, 7, 8, 5, 7, 6, 7, 5, 6, 5, 5, 6, 10, 9, 12, 8, 11, 10, 12, 7, 10, 9, 11, 8, 10, 9, 10, 6, 9, 8, 10, 7, 9, 8, 9, 6, 8, 7, 8, 6, 7, 6, 6, 7, 12, 11, 15, 10, 14, 13, 16, 9, 13, 12, 15, 11, 14, 13
Offset: 0

Views

Author

Gus Wiseman, Dec 21 2022

Keywords

Comments

We define the adjusted partial sums of a composition to be obtained by subtracting one from all parts, taking partial sums, and adding one back to all parts.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 29th composition in standard order is (1,1,2,1), with adjusted partial sums (1,1,2,2), with sum 6, so a(29) = 6.
		

Crossrefs

See link for sequences related to standard compositions.
The unadjusted reverse version is A029931, row sums of A048793.
The reverse version is A161511, row sums of A125106.
Row sums of A242628, ranked by A253565.
The unadjusted version is A359042, row sums of A358134.
A011782 counts compositions.
A066099 lists standard compositions.
A358135 gives last minus first of standard compositions.
A358194 counts partitions by sum and weighted sum.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[Accumulate[stc[n]-1]+1],{n,0,100}]

A359674 Zero-based weighted sum of the prime indices of n in weakly increasing order.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 2, 3, 0, 5, 0, 4, 3, 6, 0, 6, 0, 7, 4, 5, 0, 9, 3, 6, 6, 9, 0, 8, 0, 10, 5, 7, 4, 11, 0, 8, 6, 12, 0, 10, 0, 11, 8, 9, 0, 14, 4, 9, 7, 13, 0, 12, 5, 15, 8, 10, 0, 14, 0, 11, 10, 15, 6, 12, 0, 15, 9, 11, 0, 17, 0, 12, 9, 17, 5, 14, 0, 18
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The prime indices of 12 are {1,1,2}, so a(12) = 0*1 + 1*1 + 2*2 = 5.
		

Crossrefs

Positions of last appearances (except 0) are A001248.
Positions of 0's are A008578.
The version for standard compositions is A124757, reverse A231204.
The one-based version is A304818, reverse A318283.
Positions of first appearances are A359675, reverse A359680.
First position of n is A359676(n), reverse A359681.
The reverse version is A359677, firsts A359679.
Number of appearances of positive n is A359678(n).
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    Table[wts[primeMS[n]],{n,100}]

A359676 Least positive integer whose weakly increasing prime indices have zero-based weighted sum n (A359674).

Original entry on oeis.org

1, 4, 6, 8, 14, 12, 16, 20, 30, 24, 32, 36, 40, 52, 48, 56, 100, 72, 80, 92, 96, 104, 112, 124, 136, 148, 176, 152, 214, 172, 184, 188, 262, 212, 272, 236, 248, 244, 304, 268, 346, 284, 328, 292, 386, 316, 398, 332, 376, 356, 458, 388, 478, 404, 472, 412, 526
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
    1: {}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   14: {1,4}
   12: {1,1,2}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   52: {1,1,6}
   48: {1,1,1,1,2}
		

Crossrefs

First position of n in A359674, reverse A359677.
The sorted version is A359675, reverse A359680.
The reverse one-based version is A359679, sorted A359754.
The reverse version is A359681.
The one-based version is A359682, sorted A359755.
The version for standard compositions is A359756, one-based A089633.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A124757 gives zero-based weighted sum of standard compositions, rev A231204.
A304818 gives weighted sums of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=20;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[primeMS[n]],{n,1,Prime[nn]^2}];
    Table[Position[seq,k][[1,1]],{k,0,nn}]
Showing 1-10 of 38 results. Next