cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A005940 The Doudna sequence: write n-1 in binary; power of prime(k) in a(n) is # of 1's that are followed by k-1 0's.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 27, 16, 11, 14, 21, 20, 35, 30, 45, 24, 49, 50, 75, 36, 125, 54, 81, 32, 13, 22, 33, 28, 55, 42, 63, 40, 77, 70, 105, 60, 175, 90, 135, 48, 121, 98, 147, 100, 245, 150, 225, 72, 343, 250, 375, 108, 625, 162, 243, 64, 17, 26, 39
Offset: 1

Views

Author

Keywords

Comments

A permutation of the natural numbers. - Robert G. Wilson v, Feb 22 2005
Fixed points: A029747. - Reinhard Zumkeller, Aug 23 2006
The even bisection, when halved, gives the sequence back. - Antti Karttunen, Jun 28 2014
From Antti Karttunen, Dec 21 2014: (Start)
This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A003961 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 27 16
11 14 21 20 35 30 45 24 49 50 75 36 125 54 81 32
etc.
Sequence A163511 is obtained by scanning the same tree level by level, from right to left. Also in binary trees A253563 and A253565 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees.
A252737(n) gives the sum and A252738(n) the product of terms on row n (where 1 is on row 0, 2 on row 1, 3 and 4 on row 2, etc.). A252745(n) gives the number of nodes on level n whose left child is larger than the right child, A252750 the difference between left and right child for each node from node 2 onward.
(End)
-A008836(a(1+n)) gives the corresponding numerator for A323505(n). - Antti Karttunen, Jan 19 2019
(a(2n+1)-1)/2 [= A244154(n)-1, for n >= 0] is a permutation of the natural numbers. - George Beck and Antti Karttunen, Dec 08 2019
From Peter Munn, Oct 04 2020: (Start)
Each term has the same even part (equivalently, the same 2-adic valuation) as its index.
Using the tree depicted in Antti Karttunen's 2014 comment:
Numbers are on the right branch (4 and descendants) if and only if divisible by the square of their largest prime factor (cf. A070003).
Numbers on the left branch, together with 2, are listed in A102750.
(End)
According to Kutz (1981), he learned of this sequence from American mathematician Byron Leon McAllister (1929-2017) who attributed the invention of the sequence to a graduate student by the name of Doudna (first name Paul?) in the mid-1950's at the University of Wisconsin. - Amiram Eldar, Jun 17 2021
From David James Sycamore, Sep 23 2022: (Start)
Alternative (recursive) definition: If n is a power of 2 then a(n)=n. Otherwise, if 2^j is the greatest power of 2 not exceeding n, and if k = n - 2^j, then a(n) is the least m*a(k) that has not occurred previously, where m is an odd prime.
Example: Use recursion with n = 77 = 2^6 + 13. a(13) = 25 and since 11 is the smallest odd prime m such that m*a(13) has not already occurred (see a(27), a(29),a(45)), then a(77) = 11*25 = 275. (End)
The odd bisection, when transformed by replacing all prime(k)^e in a(2*n - 1) with prime(k-1)^e, returns a(n), and thus gives the sequence back. - David James Sycamore, Sep 28 2022

Examples

			From _N. J. A. Sloane_, Aug 22 2022: (Start)
Let c_i = number of 1's in binary expansion of n-1 that have i 0's to their right, and let p(j) = j-th prime.  Then a(n) = Product_i p(i+1)^c_i.
If n=9, n-1 is 1000, c_3 = 1, a(9) = p(4)^1 = 7.
If n=10, n-1 = 1001, c_0 = 1, c_2 = 1, a(10) = p(1)*p(3) = 2*5 = 10.
If n=11, n-1 = 1010, c_1 = 1, c_2 = 1, a(11) = p(2)*p(3) = 15. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A103969. Inverse is A005941 (A156552).
Cf. A125106. [From Franklin T. Adams-Watters, Mar 06 2010]
Cf. A252737 (gives row sums), A252738 (row products), A332979 (largest on row).
Related permutations of positive integers: A163511 (via A054429), A243353 (via A006068), A244154, A253563 (via A122111), A253565, A332977, A334866 (via A225546).
A000120, A003602, A003961, A006519, A053645, A070939, A246278, A250246, A252753, A253552 are used in a formula defining this sequence.
Formulas for f(a(n)) are given for f = A000265, A003963, A007949, A055396, A056239.
Numbers that occur at notable sets of positions in the binary tree representation of the sequence: A000040, A000079, A002110, A070003, A070826, A102750.
Cf. A106737, A290077, A323915, A324052, A324054, A324055, A324056, A324057, A324058, A324114, A324335, A324340, A324348, A324349 for various number-theoretical sequences applied to (i.e., permuted by) this sequence.
k-adic valuation: A007814 (k=2), A337821 (k=3).
Positions of multiples of 3: A091067.
Primorial deflation: A337376 / A337377.
Sum of prime indices of a(n) is A161511, reverse version A359043.
A048793 lists binary indices, ranked by A019565.
A066099 lists standard comps, partial sums A358134 (ranked by A358170).

Programs

  • Haskell
    a005940 n = f (n - 1) 1 1 where
       f 0 y _          = y
       f x y i | m == 0 = f x' y (i + 1)
               | m == 1 = f x' (y * a000040 i) i
               where (x',m) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library)
    (define (A005940 n) (A005940off0 (- n 1))) ;; The off=1 version, utilizing any one of three different offset-0 implementations:
    (definec (A005940off0 n) (cond ((< n 2) (+ 1 n)) (else (* (A000040 (- (A070939 n) (- (A000120 n) 1))) (A005940off0 (A053645 n))))))
    (definec (A005940off0 n) (cond ((<= n 2) (+ 1 n)) ((even? n) (A003961 (A005940off0 (/ n 2)))) (else (* 2 (A005940off0 (/ (- n 1) 2))))))
    (define (A005940off0 n) (let loop ((n n) (i 1) (x 1)) (cond ((zero? n) x) ((even? n) (loop (/ n 2) (+ i 1) x)) (else (loop (/ (- n 1) 2) i (* x (A000040 i)))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Maple
    f := proc(n,i,x) option remember ; if n = 0 then x; elif type(n,'even') then procname(n/2,i+1,x) ; else procname((n-1)/2,i,x*ithprime(i)) ; end if; end proc:
    A005940 := proc(n) f(n-1,1,1) ; end proc: # R. J. Mathar, Mar 06 2010
  • Mathematica
    f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; Table[ f[n], {n, 67}] (* Robert G. Wilson v, Feb 22 2005 *)
    Table[Times@@Prime/@(Join@@Position[Reverse[IntegerDigits[n,2]],1]-Range[DigitCount[n,2,1]]+1),{n,0,100}] (* Gus Wiseman, Dec 28 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, n%2 && (t*=p) || p=nextprime(p+1)); t } \\ M. F. Hasler, Mar 07 2010; update Aug 29 2014
    
  • PARI
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); t \\ Charles R Greathouse IV, Nov 11 2021
    
  • Python
    from sympy import prime
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    print([b(n - 1) for n in range(1, 101)]) # Indranil Ghosh, Apr 10 2017
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A005940(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items()) # Chai Wah Wu, Mar 10 2023

Formula

From Reinhard Zumkeller, Aug 23 2006, R. J. Mathar, Mar 06 2010: (Start)
a(n) = f(n-1, 1, 1)
where f(n, i, x) = x if n = 0,
= f(n/2, i+1, x) if n > 0 is even
= f((n-1)/2, i, x*prime(i)) otherwise. (End)
From Antti Karttunen, Jun 26 2014: (Start)
Define a starting-offset 0 version of this sequence as:
b(0)=1, b(1)=2, [base cases]
and then compute the rest either with recurrence:
b(n) = A000040(1+(A070939(n)-A000120(n))) * b(A053645(n)).
or
b(2n) = A003961(b(n)), b(2n+1) = 2 * b(n). [Compare this to the similar recurrence given for A163511.]
Then define a(n) = b(n-1), where a(n) gives this sequence A005940 with the starting offset 1.
Can be also defined as a composition of related permutations:
a(n+1) = A243353(A006068(n)).
a(n+1) = A163511(A054429(n)). [Compare the scatter plots of this sequence and A163511 to each other.]
This permutation also maps between the partitions as enumerated in the lists A125106 and A112798, providing identities between:
A161511(n) = A056239(a(n+1)). [The corresponding sums ...]
A243499(n) = A003963(a(n+1)). [... and the products of parts of those partitions.]
(End)
From Antti Karttunen, Dec 21 2014 - Jan 04 2015: (Start)
A002110(n) = a(1+A002450(n)). [Primorials occur at (4^n - 1)/3 in the offset-0 version of the sequence.]
a(n) = A250246(A252753(n-1)).
a(n) = A122111(A253563(n-1)).
For n >= 1, A055396(a(n+1)) = A001511(n).
For n >= 2, a(n) = A246278(1+A253552(n)).
(End)
From Peter Munn, Oct 04 2020: (Start)
A000265(a(n)) = a(A000265(n)) = A003961(a(A003602(n))).
A006519(a(n)) = a(A006519(n)) = A006519(n).
a(n) = A003961(a(A003602(n))) * A006519(n).
A007814(a(n)) = A007814(n).
A007949(a(n)) = A337821(n) = A007814(A003602(n)).
a(n) = A225546(A334866(n-1)).
(End)
a(2n) = 2*a(n), or generally a(2^k*n) = 2^k*a(n). - Amiram Eldar, Oct 03 2022
If n-1 = Sum_{i} 2^(q_i-1), then a(n) = Product_{i} prime(q_i-i+1). These are the Heinz numbers of the rows of A125106. If the offset is changed to 0, the inverse is A156552. - Gus Wiseman, Dec 28 2022

Extensions

More terms from Robert G. Wilson v, Feb 22 2005
Sign in a formula switched and Maple program added by R. J. Mathar, Mar 06 2010
Binary tree illustration and keyword tabf added by Antti Karttunen, Dec 21 2014

A253565 Permutation of natural numbers: a(0) = 1, a(1) = 2; after which, a(2n) = A253550(a(n)), a(2n+1) = A253560(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 8, 7, 25, 15, 27, 10, 18, 12, 16, 11, 49, 35, 125, 21, 75, 45, 81, 14, 50, 30, 54, 20, 36, 24, 32, 13, 121, 77, 343, 55, 245, 175, 625, 33, 147, 105, 375, 63, 225, 135, 243, 22, 98, 70, 250, 42, 150, 90, 162, 28, 100, 60, 108, 40, 72, 48, 64, 17, 169, 143, 1331, 91, 847, 539, 2401, 65, 605, 385, 1715, 275, 1225, 875, 3125, 39
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A253550 to the parent, and each child to the right is obtained by applying A253560 to the parent:
1
|
...................2...................
3 4
5......../ \........9 6......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 25 15 27 10 18 12 16
11 49 35 125 21 75 45 81 14 50 30 54 20 36 24 32
etc.
Sequence A253563 is the mirror image of the same tree. Also in binary trees A005940 and A163511 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees. Of these four trees, this is the one where the left child is always smaller than the right child.
Note that the indexing of sequence starts from 0, although its range starts from one.
The term a(n) is the Heinz number of the adjusted partial sums of the n-th composition in standard order, where (1) the k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again, (2) the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), and (3) we define the adjusted partial sums of a composition to be obtained by subtracting one from all parts, taking partial sums, and adding one back to all parts. See formula for a simplification. A triangular form is A242628. The inverse is A253566. The non-adjusted version is A358170. - Gus Wiseman, Dec 17 2022

Examples

			From _Gus Wiseman_, Dec 23 2022: (Start)
This represents the following bijection between compositions and partitions. The n-th composition in standard order together with the reversed prime indices of a(n) are:
   0:        () -> ()
   1:       (1) -> (1)
   2:       (2) -> (2)
   3:     (1,1) -> (1,1)
   4:       (3) -> (3)
   5:     (2,1) -> (2,2)
   6:     (1,2) -> (2,1)
   7:   (1,1,1) -> (1,1,1)
   8:       (4) -> (4)
   9:     (3,1) -> (3,3)
  10:     (2,2) -> (3,2)
  11:   (2,1,1) -> (2,2,2)
  12:     (1,3) -> (3,1)
  13:   (1,2,1) -> (2,2,1)
  14:   (1,1,2) -> (2,1,1)
  15: (1,1,1,1) -> (1,1,1,1)
(End)
		

Crossrefs

Inverse: A253566.
Cf. A252737 (row sums), A252738 (row products).
Applying A001222 gives A000120.
A reverse version is A005940.
These are the Heinz numbers of the rows of A242628.
Sum of prime indices of a(n) is A359043, reverse A161511.
A048793 gives partial sums of reversed standard comps, Heinz number A019565.
A066099 lists standard compositions.
A112798 list prime indices, sum A056239.
A358134 gives partial sums of standard compositions, Heinz number A358170.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Times@@Prime/@#&/@Table[Accumulate[stc[n]-1]+1,{n,0,60}] (* Gus Wiseman, Dec 17 2022 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A253550(a(n)), a(2n+1) = A253560(a(n)).
As a composition of related permutations:
a(n) = A122111(A163511(n)).
a(n) = A253563(A054429(n)).
Other identities and observations. For all n >= 0:
a(2n+1) - a(2n) > 0. [See the comment above.]
If n = 2^(x_1)+...+2^(x_k) then a(n) = Product_{i=1..k} prime(x_k-x_{i-1}-k+i) where x_0 = 0. - Gus Wiseman, Dec 23 2022

A161511 Number of 1...0 pairs in the binary representation of 2n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 5, 5, 6, 5, 7, 6, 7, 5, 8, 7, 8, 6, 9, 7, 8, 5, 6, 6, 7, 6, 8, 7, 8, 6, 9, 8, 9, 7, 10, 8, 9, 6, 10, 9, 10, 8, 11, 9, 10, 7, 12, 10, 11, 8, 12, 9, 10, 6, 7, 7, 8, 7, 9, 8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 7, 11, 10, 11, 9, 12, 10, 11, 8, 13, 11, 12, 9, 13
Offset: 0

Views

Author

Keywords

Comments

Row (partition) sums of A125106.
a(n) is also the weight (= sum of parts) of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017

Examples

			For n = 5, the binary representation of 2n is 1010; the 1...0 pairs are 10xx, 1xx0, and xx10, so a(5) = 3.
		

Crossrefs

Cf. A000120, A243499 (gives the corresponding products), A227183, A056239, A243503, A006068, A163511.
Sum of prime indices of A005940.
Row sums of A125106.
A reverse version is A359043, row sums of A242628.
A029837 adds up standard compositions, row sums of A066099.
A029931 adds up binary indices, row sums of A048793.

Programs

  • Mathematica
    a[0] = 0; a[n_] := If[EvenQ[n], a[n/2] + DigitCount[n/2, 2, 1], a[(n-1)/2] + 1]; Array[a, 93, 0] (* Jean-François Alcover, Sep 09 2017 *)
  • PARI
    a(n)=local(t,k);t=0;k=1;while(n>0,if(n%2==0,k++,t+=k);n\=2);t
    
  • Python
    def A161511(n):
        a, b = 0, 0
        for i, j in enumerate(bin(n)[:1:-1], 1):
            if int(j):
                a += i-b
                b += 1
        return a # Chai Wah Wu, Jul 26 2023
  • Scheme
    ;; Two variants, the recursive one requiring memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (define (A161511 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ i 1) s)) (else (loop (/ (- n 1) 2) i (+ s i))))))
    (definec (A161511 n) (cond ((zero? n) n) ((even? n) (+ (A000120 n) (A161511 (/ n 2)))) (else (+ 1 (A161511 (/ (- n 1) 2))))))
    ;; Antti Karttunen, Jun 28 2014
    

Formula

a(0) = 0; a(2n) = a(n) + A000120(n); a(2n+1) = a(n) + 1.
From Antti Karttunen, Jun 28 2014: (Start)
Can be also obtained by mapping with an appropriate permutation from the lists of partition sizes computed for other enumerations similar to A125106:
a(n) = A227183(A006068(n)).
a(n) = A056239(A005940(n+1)).
a(n) = A243503(A163511(n)). (End)
a(n) = A029931(n) - binomial(A000120(n),2). - Gus Wiseman, Jan 03 2023
a(n) = a(n - A048896(n-1)) + 1 for n>=1 (see Peter J. Taylor link). - Mikhail Kurkov, Jul 04 2025

A359042 Sum of partial sums of the n-th composition in standard order (A066099).

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 4, 7, 6, 9, 5, 8, 7, 10, 5, 9, 8, 12, 7, 11, 10, 14, 6, 10, 9, 13, 8, 12, 11, 15, 6, 11, 10, 15, 9, 14, 13, 18, 8, 13, 12, 17, 11, 16, 15, 20, 7, 12, 11, 16, 10, 15, 14, 19, 9, 14, 13, 18, 12, 17, 16, 21, 7, 13, 12, 18, 11, 17, 16, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 29th composition in standard order is (1,1,2,1), with partial sums (1,2,4,5), with sum 12, so a(29) = 12.
		

Crossrefs

See link for sequences related to standard compositions.
Each n appears A000009(n) times.
The reverse version is A029931.
Comps counted by this statistic are A053632, ptns A264034, rev ptns A358194.
This is the sum of partial sums of rows of A066099.
The version for Heinz numbers of partitions is A318283, row sums of A358136.
Row sums of A358134.
A011782 counts compositions.
A065120 gives first part of standard compositions, last A001511.
A242628 lists adjusted partial sums, ranked by A253565, row sums A359043.
A358135 gives last minus first of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[Accumulate[stc[n]]],{n,0,100}]

A359674 Zero-based weighted sum of the prime indices of n in weakly increasing order.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 2, 3, 0, 5, 0, 4, 3, 6, 0, 6, 0, 7, 4, 5, 0, 9, 3, 6, 6, 9, 0, 8, 0, 10, 5, 7, 4, 11, 0, 8, 6, 12, 0, 10, 0, 11, 8, 9, 0, 14, 4, 9, 7, 13, 0, 12, 5, 15, 8, 10, 0, 14, 0, 11, 10, 15, 6, 12, 0, 15, 9, 11, 0, 17, 0, 12, 9, 17, 5, 14, 0, 18
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The prime indices of 12 are {1,1,2}, so a(12) = 0*1 + 1*1 + 2*2 = 5.
		

Crossrefs

Positions of last appearances (except 0) are A001248.
Positions of 0's are A008578.
The version for standard compositions is A124757, reverse A231204.
The one-based version is A304818, reverse A318283.
Positions of first appearances are A359675, reverse A359680.
First position of n is A359676(n), reverse A359681.
The reverse version is A359677, firsts A359679.
Number of appearances of positive n is A359678(n).
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    Table[wts[primeMS[n]],{n,100}]

A359676 Least positive integer whose weakly increasing prime indices have zero-based weighted sum n (A359674).

Original entry on oeis.org

1, 4, 6, 8, 14, 12, 16, 20, 30, 24, 32, 36, 40, 52, 48, 56, 100, 72, 80, 92, 96, 104, 112, 124, 136, 148, 176, 152, 214, 172, 184, 188, 262, 212, 272, 236, 248, 244, 304, 268, 346, 284, 328, 292, 386, 316, 398, 332, 376, 356, 458, 388, 478, 404, 472, 412, 526
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
    1: {}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   14: {1,4}
   12: {1,1,2}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   52: {1,1,6}
   48: {1,1,1,1,2}
		

Crossrefs

First position of n in A359674, reverse A359677.
The sorted version is A359675, reverse A359680.
The reverse one-based version is A359679, sorted A359754.
The reverse version is A359681.
The one-based version is A359682, sorted A359755.
The version for standard compositions is A359756, one-based A089633.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A124757 gives zero-based weighted sum of standard compositions, rev A231204.
A304818 gives weighted sums of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=20;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[primeMS[n]],{n,1,Prime[nn]^2}];
    Table[Position[seq,k][[1,1]],{k,0,nn}]

A359677 Zero-based weighted sum of the reversed (weakly decreasing) prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 3, 0, 1, 2, 6, 0, 4, 0, 3, 2, 1, 0, 6, 3, 1, 6, 3, 0, 4, 0, 10, 2, 1, 3, 7, 0, 1, 2, 6, 0, 4, 0, 3, 6, 1, 0, 10, 4, 5, 2, 3, 0, 9, 3, 6, 2, 1, 0, 7, 0, 1, 6, 15, 3, 4, 0, 3, 2, 5, 0, 11, 0, 1, 7, 3, 4, 4, 0, 10, 12, 1, 0, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The reversed prime indices of 12 are (2,1,1), so a(12) = 0*2 + 1*1 + 2*1 = 3.
		

Crossrefs

Positions of 0's are A008578.
Positions of 1's are A100484.
The version for standard compositions is A231204, reverse of A124757.
The one-based version is A318283, unreversed A304818.
The one-based version for standard compositions is A359042, rev of A029931.
This is the reverse version of A359674.
First position of n is A359679(n), reverse of A359675.
Positions of first appearances are A359680, reverse of A359676.
A053632 counts compositions by weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    Table[wts[Reverse[primeMS[n]]],{n,100}]

A359681 Least positive integer whose reversed (weakly decreasing) prime indices have zero-based weighted sum (A359677) equal to n.

Original entry on oeis.org

1, 4, 9, 8, 18, 50, 16, 36, 100, 54, 32, 72, 81, 108, 300, 64, 144, 400, 216, 600, 243, 128, 288, 800, 432, 486, 1350, 648, 256, 576, 729, 864, 2400, 3375, 1296, 3600, 512, 1152, 1944, 1728, 4800, 9000, 2187, 2916, 8100, 1024, 2304, 6400, 3456, 4374, 12150
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
    1: {}
    4: {1,1}
    9: {2,2}
    8: {1,1,1}
   18: {1,2,2}
   50: {1,3,3}
   16: {1,1,1,1}
   36: {1,1,2,2}
  100: {1,1,3,3}
   54: {1,2,2,2}
   32: {1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  300: {1,1,2,3,3}
		

Crossrefs

The unreversed version is A359676.
First position of n in A359677, reverse A359674.
The one-based version is A359679, sorted A359754.
The sorted version is A359680, reverse A359675.
The unreversed one-based version is A359682, sorted A359755.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A124757 gives zero-based weighted sum of standard compositions, rev A231204.
A304818 gives weighted sum of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    nn=20;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[Reverse[primeMS[n]]],{n,1,Prime[nn]^2}];
    Table[Position[seq,k][[1,1]],{k,0,nn}]

A359495 Sum of positions of 1's in binary expansion minus sum of positions of 1's in reversed binary expansion, where positions in a sequence are read starting with 1 from the left.

Original entry on oeis.org

0, 0, -1, 0, -2, 0, -2, 0, -3, 0, -2, 1, -4, -1, -3, 0, -4, 0, -2, 2, -4, 0, -2, 2, -6, -2, -4, 0, -6, -2, -4, 0, -5, 0, -2, 3, -4, 1, -1, 4, -6, -1, -3, 2, -5, 0, -2, 3, -8, -3, -5, 0, -7, -2, -4, 1, -9, -4, -6, -1, -8, -3, -5, 0, -6, 0, -2, 4, -4, 2, 0, 6
Offset: 0

Views

Author

Gus Wiseman, Jan 05 2023

Keywords

Comments

Also the sum of partial sums of reversed binary expansion minus sum of partial sums of binary expansion.

Examples

			The binary expansion of 158 is (1,0,0,1,1,1,1,0), with positions of 1's {1,4,5,6,7} with sum 23, reversed {2,3,4,5,8} with sum 22, so a(158) = 1.
		

Crossrefs

Indices of positive terms are A359401.
Indices of 0's are A359402.
A030190 gives binary expansion, reverse A030308.
A070939 counts binary digits.
A230877 adds up positions of 1's in binary expansion, reverse A029931.

Programs

  • Maple
    a:= n-> (l-> add(i*(l[-i]-l[i]), i=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..127);  # Alois P. Heinz, Jan 09 2023
  • Mathematica
    sap[q_]:=Sum[q[[i]]*(2i-Length[q]-1),{i,Length[q]}];
    Table[sap[IntegerDigits[n,2]],{n,0,100}]
  • Python
    def A359495(n):
        k = n.bit_length()-1
        return sum((i<<1)-k for i, j in enumerate(bin(n)[2:]) if j=='1') # Chai Wah Wu, Jan 09 2023

Formula

a(n) = A029931(n) - A230877(n).
If n = Sum_{i=1..k} q_i * 2^(i-1), then a(n) = Sum_{i=1..k} q_i * (2i-k-1).

A359682 Least positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 8, 10, 15, 12, 16, 18, 20, 26, 24, 28, 50, 36, 40, 46, 48, 52, 56, 62, 68, 74, 88, 76, 107, 86, 92, 94, 131, 106, 136, 118, 124, 122, 152, 134, 173, 142, 164, 146, 193, 158, 199, 166, 188, 178, 229, 194, 239, 202, 236, 206, 263, 214, 271, 218
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.

Examples

			The 5 numbers with weighted sum of prime indices 12, together with their prime indices:
  20: {1,1,3}
  27: {2,2,2}
  33: {2,5}
  37: {12}
  49: {4,4}
Hence a(12) = 20.
		

Crossrefs

The version for standard compositions is A089633, zero-based A359756.
First position of n in A304818, reverse A318283.
The greatest instead of least is A359497, reverse A359683.
The sorted zero-based version is A359675, reverse A359680.
The zero-based version is A359676, reverse A359681.
The reverse version is A359679.
The sorted version is A359755, reverse A359754.
A112798 lists prime indices, length A001222, sum A056239.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=20;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    seq=Table[ots[primeMS[n]],{n,1,Prime[nn]^2}];
    Table[Position[seq,k][[1,1]],{k,0,nn}]
Showing 1-10 of 19 results. Next