cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A358323 a(n) is the minimal determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1.

Original entry on oeis.org

1, 0, -1, -7, -60, -1210, -34020, -607332, -30448441, -1093612784, -55400732937, -2471079070511, -197500419383964
Offset: 0

Views

Author

Stefano Spezia, Nov 09 2022

Keywords

Examples

			a(3) = -7:
    [1, 2, 0;
     2, 1, 2;
     0, 2, 1]
a(4) = -60:
    [2, 3, 0, 1;
     3, 2, 3, 0;
     0, 3, 2, 3;
     1, 0, 3, 2]
a(5) = -1210:
    [4, 3, 0, 2, 1;
     3, 4, 3, 0, 2;
     0, 3, 4, 3, 0;
     2, 0, 3, 4, 3;
     1, 2, 0, 3, 4]
		

Crossrefs

Cf. A350953.
Cf. A358324 (maximal), A358325 (minimal nonzero absolute value), A358326 (minimal permanent), A358327 (maximal permanent).

Programs

  • Mathematica
    Join[{1}, Table[Min[Table[Det[ToeplitzMatrix[Part[Permutations[Join[{0}, Range[n-1]]], i]]],{i,n!}]],{n,9}]]

Extensions

a(10)-a(12) from Lucas A. Brown, Nov 16 2022

A358324 a(n) is the maximal determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n - 1.

Original entry on oeis.org

1, 0, 1, 8, 63, 2090, 36875, 1123653, 34292912, 1246207300, 53002204560, 2418538080316, 215120941720912
Offset: 0

Views

Author

Stefano Spezia, Nov 09 2022

Keywords

Examples

			a(3) = 8:
    [0, 2, 1;
     2, 0, 2;
     1, 2, 0]
a(4) = 63:
    [1, 3, 2, 0;
     3, 1, 3, 2;
     2, 3, 1, 3;
     0, 2, 3, 1]
a(5) = 2090:
    [2, 4, 0, 1, 3;
     4, 2, 4, 0, 1;
     0, 4, 2, 4, 0;
     1, 0, 4, 2, 4;
     3, 1, 0, 4, 2]
		

Crossrefs

Cf. A350954.
Cf. A358323 (minimal), A358325 (minimal nonzero absolute value), A358326 (minimal permanent), A358327 (maximal permanent).

Programs

  • Mathematica
    Join[{1}, Table[Max[Table[Det[ToeplitzMatrix[Part[Permutations[Join[{0}, Range[n-1]]], i]]],{i,n!}]],{n,9}]]

Extensions

a(10)-a(12) from Lucas A. Brown, Nov 16 2022

A369834 a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n-1.

Original entry on oeis.org

1, 1, 2, 5, 23, 94, 614, 4628, 38243, 351024
Offset: 0

Views

Author

Stefano Spezia, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := CountDistinct[Table[Det[ToeplitzMatrix[Part[Permutations[Join[{0}, Range[n - 1]]], i]]], {i, n !}]]; Join[{1}, Array[a,9]]
  • Python
    from itertools import permutations
    from sympy import Matrix
    def A369834(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).det() for p in permutations(range(n))}) # Chai Wah Wu, Feb 11 2024

Formula

a(n) <= A000142(n).

A374282 a(n) is the minimal absolute value of the determinant of a nonsingular n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.

Original entry on oeis.org

1, 4, 12, 2, 13, 16, 21, 4, 1
Offset: 2

Views

Author

Stefano Spezia, Jul 02 2024

Keywords

Comments

The offset is 2 because for n = 1 the matrix is null, and hence, singular.

Examples

			a(5) = 2:
  [0, 4, 1, 2, 3]
  [4, 0, 4, 1, 2]
  [1, 4, 0, 4, 1]
  [2, 1, 4, 0, 4]
  [3, 2, 1, 4, 0]
		

Crossrefs

Cf. A085807 (minimal permanent), A374279 (minimal signed), A374280 (maximal signed), A374281 (maximal absolute value), A374283 (maximal permanent).

Programs

  • Mathematica
    a[n_]:=Min[Select[Table[Abs[Det[ToeplitzMatrix[Join[{0},Part[Permutations[Range[n-1]],i]]]]],{i,(n-1)!}],Positive]]; Array[a,9,2]

A359618 a(n) is the minimal absolute value of the determinant of a nonsingular n X n Hermitian Toeplitz matrix using all the integers 1, 2, ..., n and with off-diagonal elements purely imaginary.

Original entry on oeis.org

1, 1, 3, 9, 16, 21, 20, 17, 131, 62, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 21 2023

Keywords

Examples

			a(4) = 16:
   [   1,   2*i,   4*i,  3*i;
    -2*i,     1,   2*i,  4*i;
    -4*i,  -2*i,     1,  2*i;
    -3*i,  -4*i,  -2*i,    1 ]
		

Crossrefs

Cf. A359614 (minimal signed), A359615 (maximal signed), A359616 (minimal permanent), A359617 (maximal permanent).

Programs

  • Mathematica
    a={1}; For[n=1, n<=8, n++, mn=Infinity; For[d=1, d<=n, d++, For[i=1, i<=(n-1)!, i++, If[0<(t=Abs[Det[ToeplitzMatrix[Join[{d}, I Part[Permutations[Drop[Range[n], {d}]], i]]]]])
    				
Showing 1-5 of 5 results.