A358332 Numbers whose prime indices have arithmetic and geometric mean differing by one.
57, 228, 1064, 1150, 1159, 2405, 3249, 7991, 29785, 29999, 30153, 35378, 51984, 82211, 133931, 185193, 187039, 232471, 242592, 374599, 404225, 431457, 685207, 715129, 927288, 1132096, 1165519, 1322500, 1343281, 1555073, 1872413, 2016546, 2873687, 3468319, 4266421, 4327344
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 57: {2,8} 228: {1,1,2,8} 1064: {1,1,1,4,8} 1150: {1,3,3,9} 1159: {8,18} 2405: {3,6,12} 3249: {2,2,8,8} 7991: {18,32} 29785: {3,4,9,12} 29999: {32,50} 30153: {2,8,9,9} 35378: {1,4,4,8,8} 51984: {1,1,1,1,2,2,8,8} 82211: {50,72} 133931: {4,8,8,16} 185193: {2,2,2,8,8,8} 187039: {72,98} 232471: {12,18,27}
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1458
- Wikipedia, Geometric mean
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[10000],Mean[primeMS[#]]==1+GeometricMean[primeMS[#]]&]
-
PARI
isok(k) = if (k>1, my(f=factor(k), vf=List()); for (i=1, #f~, for (j=1, f[i,2], listput(vf, primepi(f[i,1])))); my(v = Vec(vf)); vecsum(v)/#v == 1 + sqrtn(vecprod(v), #v);); \\ Michel Marcus, Nov 11 2022
Extensions
More terms from Michel Marcus, Nov 11 2022
Comments