cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358334 Number of twice-partitions of n into odd-length partitions.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 43, 77, 137, 241, 410, 720, 1209, 2073, 3498, 5883, 9768, 16413, 26978, 44741, 73460, 120462, 196066, 320389, 518118, 839325, 1353283, 2178764, 3490105, 5597982, 8922963, 14228404, 22609823, 35875313, 56756240, 89761600, 141410896, 222675765
Offset: 0

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(0) = 1 through a(5) = 13 twice-partitions:
  ()  ((1))  ((2))     ((3))        ((4))           ((5))
             ((1)(1))  ((111))      ((211))         ((221))
                       ((2)(1))     ((2)(2))        ((311))
                       ((1)(1)(1))  ((3)(1))        ((3)(2))
                                    ((111)(1))      ((4)(1))
                                    ((2)(1)(1))     ((11111))
                                    ((1)(1)(1)(1))  ((111)(2))
                                                    ((211)(1))
                                                    ((2)(2)(1))
                                                    ((3)(1)(1))
                                                    ((111)(1)(1))
                                                    ((2)(1)(1)(1))
                                                    ((1)(1)(1)(1)(1))
		

Crossrefs

For multiset partitions of integer partitions: A356932, ranked by A356935.
For odd length instead of lengths we have A358824.
For odd sums instead of lengths we have A358825.
For odd sums also we have A358827.
For odd length also we have A358834.
A000041 counts integer partitions.
A027193 counts odd-length partitions, ranked by A026424.
A055922 counts partitions with odd multiplicities, also odd parts A117958.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))}
    seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1), -(n+1))} \\ Andrew Howroyd, Dec 30 2022

Formula

G.f.: 1/Product_{k>=1} (1 - A027193(k)*x^k). - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2022