A358334 Number of twice-partitions of n into odd-length partitions.
1, 1, 2, 4, 7, 13, 25, 43, 77, 137, 241, 410, 720, 1209, 2073, 3498, 5883, 9768, 16413, 26978, 44741, 73460, 120462, 196066, 320389, 518118, 839325, 1353283, 2178764, 3490105, 5597982, 8922963, 14228404, 22609823, 35875313, 56756240, 89761600, 141410896, 222675765
Offset: 0
Keywords
Examples
The a(0) = 1 through a(5) = 13 twice-partitions: () ((1)) ((2)) ((3)) ((4)) ((5)) ((1)(1)) ((111)) ((211)) ((221)) ((2)(1)) ((2)(2)) ((311)) ((1)(1)(1)) ((3)(1)) ((3)(2)) ((111)(1)) ((4)(1)) ((2)(1)(1)) ((11111)) ((1)(1)(1)(1)) ((111)(2)) ((211)(1)) ((2)(2)(1)) ((3)(1)(1)) ((111)(1)(1)) ((2)(1)(1)(1)) ((1)(1)(1)(1)(1))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; Table[Length[Select[twiptn[n],OddQ[Times@@Length/@#]&]],{n,0,10}]
-
PARI
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))} seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1), -(n+1))} \\ Andrew Howroyd, Dec 30 2022
Formula
G.f.: 1/Product_{k>=1} (1 - A027193(k)*x^k). - Andrew Howroyd, Dec 30 2022
Extensions
Terms a(21) and beyond from Andrew Howroyd, Dec 30 2022
Comments