cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358348 Numbers k such that k == k^k (mod 9).

Original entry on oeis.org

1, 4, 7, 9, 10, 13, 16, 17, 18, 19, 22, 25, 27, 28, 31, 34, 35, 36, 37, 40, 43, 45, 46, 49, 52, 53, 54, 55, 58, 61, 63, 64, 67, 70, 71, 72, 73, 76, 79, 81, 82, 85, 88, 89, 90, 91, 94, 97, 99, 100, 103, 106, 107, 108, 109, 112, 115, 117, 118, 121, 124, 125, 126
Offset: 1

Views

Author

Ivan Stoykov, Nov 11 2022

Keywords

Comments

Each multiple of 9 is in the sequence. Additionally, the squares are also present.

Examples

			4 is a term since 4^4 = 256 == 4 (mod 9).
		

References

  • M. Fujiwara and Y. Ogawa, Introduction to Truly Beautiful Mathematics. Tokyo: Chikuma Shobo, 2005.

Crossrefs

Programs

  • Maple
    A358348 := proc(n)
        2*(n+1)-op(modp(n,9)+1,[2,3,2,1,1,2,1,0,1]) ;
    end proc:
    seq(A358348(n),n=1..50) ; # R. J. Mathar, Mar 29 2023
  • Mathematica
    Select[Range[130], MemberQ[{0, 1, 4, 7, 9, 10, 13, 16, 17}, Mod[#, 18]] &] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    isok(k) = k == Mod(k,9)^k; \\ Michel Marcus, Nov 22 2022
    
  • Python
    def A358348(n):
        return ((0, 1, 4, 7, 9, 10, 13, 16, 17)[m := n % 9]
             + (n - m << 1))  # Chai Wah Wu, Feb 09 2023

Formula

G.f.: x*(x+1)*(x^7+3*x^5+x^3+x^2+2*x+1)/((1-x)^2*(1+x^3+x^6)*(1+x+x^2)). - Alois P. Heinz, Feb 08 2023
a(n) = 2*(n+1) - b(n) where b(n>=0) = 2,3,2,1,1,2,1,0,1,2,3,2,... has period 9. - Kevin Ryde, Mar 26 2023