A358451 Inverse Euler transform of the Riordan numbers, (A005043).
1, 0, 1, 1, 2, 5, 11, 28, 68, 174, 445, 1166, 3068, 8190, 21994, 59585, 162360, 445145, 1226376, 3394654, 9434260, 26317865, 73661588, 206809307, 582255448, 1643536725, 4650250254, 13186484316, 37468566744, 106666821221, 304200399505, 868977304140, 2486163857424
Offset: 0
Keywords
Links
- OEIS Wiki, Euler transform
Crossrefs
Cf. A005043.
Programs
-
Maple
EulerInvTransform := proc(f) local c, b; c := proc(n) option remember; ifelse(n = 0, f(0), f(n) - b(n, n-1)) end: b := proc(n, k) option remember; if n = 0 then return 1 elif k < 1 then return 0 fi; add(binomial(c(k) + j - 1, j)*b(n-k*j, k-1), j=0..n/k) end: c end: a := EulerInvTransform(A005043): seq(a(n), n = 0..32);
-
Mathematica
EulerInvTransform[seq_List] := Module[{final = {}}, Do[AppendTo[final, i*seq[[i]] - Sum[final[[d]]*seq[[i-d]], {d, i-1}]], {i, Length[seq]}]; Table[Sum[MoebiusMu[i/d]*final[[d]], {d, Divisors[i]}]/i, {i, Length[seq] }]]; A005043[n_] := A005043[n] = If[n <= 1, 1-n, (n-1)*(2*A005043[n-1] + 3*A005043[n-2])/(n+1)]; Join[{1}, EulerInvTransform[Array[A005043, 32]]] (* Jean-François Alcover, Jun 15 2024 *)
-
Python
from typing import Callable from functools import cache from math import comb # Define 'binomial' for compatibility with Maple. def binomial(n: int, k: int) -> int: if 0 <= k <= n: return comb(n, k) if k <= n < 0: return comb(-k-1, n-k)*(-1)**(n-k) if n < 0 <= k: return comb(-n+k-1, k)*(-1)**k return 0 def EulerInvTransform(f: Callable) -> Callable: @cache def h(n: int, k: int) -> int: if n == 0: return 1 if k < 1: return 0 return sum(binomial(b(k)+j-1, j) * h(n-k*j, k-1) for j in range(1 + n // k)) @cache def b(n: int) -> int: if n == 0: return f(0) return f(n) - h(n, n - 1) return b a = EulerInvTransform(A005043) print([a(n) for n in range(33)])
-
SageMath
z = PowerSeriesRing(ZZ, 'z').gen().O(33) g = 1 + z + sqrt(1 - 2*z - 3*z**2) f = -z * g.derivative() / g print([1] + [sum(moebius(n // d) * f[d] for d in divisors(n)) // n for n in range(1, 33)])
Formula
a(n) ~ 3^(n + 1/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 15 2024