cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A003085 Number of weakly connected digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054733.
Column sums of A350789.
The labeled case is A003027.
Cf. A000273, A003084, A035512 (strongly connected).

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000273):
    seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
  • Mathematica
    Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
    terms = 13;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
    a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
    Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
  • Python
    from functools import lru_cache
    from itertools import product, combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A003085(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) = (1/n)*Sum_{d|n} mu(n/d)*A003084(d), where mu is Moebius function.
Inverse Euler transform of A000273. - Andrew Howroyd, Dec 27 2021

Extensions

More terms from Vladeta Jovovic, Jan 09 2000

A320779 Inverse Euler transform of the number of divisors function A000005.

Original entry on oeis.org

1, 1, 0, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, -1, 2, 1, -2, -2, 2, 3, -4, 0, 3, -3, 3, -2, -2, 2, 1, 7, -15, 0, 17, -11, -1, 0, 9, -4, -18, 26, -10, -10, 24, -17, -15, 21, 27, -42, -37, 69, 43, -113, -11, 149, -98, -24, 67, -57, 24, -53, 213, -243, -193, 704
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).

Crossrefs

Cf. A000005.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 0))):
    seq(a(n), n = 1..64); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[DivisorSigma[0,n],{n,100}]]
  • Python
    from functools import lru_cache
    from sympy import mobius, divisors, divisor_count
    def A320779(n):
        @lru_cache(maxsize=None)
        def b(n): return divisor_count(n)
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 15 2024

A320781 Inverse Euler transform of the Moebius function A008683.

Original entry on oeis.org

1, -2, 0, 0, -1, 2, -4, 5, -7, 9, -10, 7, -5, -2, 19, -44, 70, -103, 138, -166, 154, -83, -70, 346, -797, 1413, -2160, 2931, -3479, 3380, -2080, -1259, 7593, -17743, 32014, -49818, 68683, -82985, 82807, -53462, -24942, 176139, -422887, 777357, -1226688
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).

Crossrefs

Cf. A008683,

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-Moebius(n))):
    seq(a(n), n = 1..45); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[MoebiusMu[n],{n,30}]]
  • Python
    from functools import lru_cache
    from sympy import mobius, divisors
    def A320781(n):
        @lru_cache(maxsize=None)
        def b(n): return mobius(n)
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(b(d)*c(n//d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 15 2024

A320780 Inverse Euler transform of the sum-of-divisors or sigma function A000203.

Original entry on oeis.org

1, 2, 1, 0, -3, 1, -1, 1, 3, -5, -1, 4, 3, -3, -7, 8, 1, -9, 7, 8, -13, -12, 27, 7, -19, -14, 11, -17, -25, 198, -81, -312, 89, 326, 325, -739, -275, 572, -255, 1287, -453, -2062, -583, 2155, 5985, -6725, -6661, 6968, 3045, 3876, -7205, -2773, -5447, -4902
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n).

Crossrefs

Cf. A000203.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-SumOfDivisors(n, 1))):
    seq(a(n), n = 1..54); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[DivisorSigma[1,n],{n,30}]]

A320778 Inverse Euler transform of the Euler totient function phi = A000010.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, -3, 4, -4, 4, -9, 14, -19, 30, -42, 50, -76, 128, -194, 286, -412, 598, -909, 1386, -2100, 3178, -4763, 7122, -10758, 16414, -25061, 38056, -57643, 87568, -133436, 203618, -311128, 475536, -726355, 1109718, -1697766, 2601166, -3987903, 6114666
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320779, A320780, A320781, A320782.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-Totient(n))):
    seq(a(n), n = 0..43); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[EulerPhi,30]]

A085686 Inverse Euler transform of Bell numbers.

Original entry on oeis.org

1, 1, 3, 9, 34, 135, 610, 2965, 15612, 87871, 526274, 3334850, 22270254, 156172689, 1146640394, 8791424549, 70227355786, 583283741066, 5027823752930, 44903579626132, 414877600876638, 3959945232723603, 38996757506464858, 395749369598406027, 4134132167178705732
Offset: 1

Views

Author

N. J. A. Sloane, Jul 18 2003

Keywords

Crossrefs

Programs

  • Maple
    read transforms; A := series(exp(exp(x)-1),x,60); A000110 := n->n!*coeff(A,x,n); [seq(A000110(i),i=1..30)]; EULERi(%);
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(combinat:-bell):
    seq(a(n), n = 1..25); # Peter Luschny, Nov 21 2022
  • Mathematica
    n=24; eq[0] = Rest[ Thread[ CoefficientList[ 1 + Series[ Sum[ BellB[k]*x^k, {k, 1, n}] - Product[1/(1-x^k)^a[k], {k, 1, n}], {x, 0, n}], x] == 0]]; s[1] = First[ Solve[ First[eq[0]], a[1]]]; Do[eq[k] = Rest[eq[k-1]] /. s[k]; s[k+1] = First[ Solve[ First[eq[k]], a[k+1]]], {k, 1, n-1}]; Table[a[k], {k, 1, n}] /. Flatten[Table[s[k], {k, 1, n}]] (* Jean-François Alcover, Jul 26 2011 *)
    bb = Array[BellB, n = 25]; s = {}; For[i = 1, i <= n, i++, AppendTo[s, i* bb[[i]] - Sum[s[[d]]*bb[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, Apr 15 2016 *)

A112354 Inverse Euler transform of n!. Also the number of sequences of permutations with no global descents which are Lyndon (smallest in lexicographic order of all cyclic shifts of the sequences) where the size of the sequence = sum of sizes of the permutations.

Original entry on oeis.org

1, 1, 4, 17, 92, 572, 4156, 34159, 314368, 3199844, 35703996, 433421495, 5687955724, 80256874912, 1211781887796, 19496946534720, 333041104402860, 6019770246910128, 114794574818830716, 2303332661416242633, 48509766592884311132, 1069983257387132347080
Offset: 1

Views

Author

Mike Zabrocki, Sep 05 2005

Keywords

Examples

			a(3) = 4 because (123), (213), (132) and (1,21) are all Lyndon.
a(4) = 17 because there are 13 permutations with no global descents of size 4 and (1,123), (1,213), (1,132) are all Lyndon.
a(5) = 92 = 71 permutations with no global descents+13 sequences of the form (1,pi) where pi in S_4 with no global descents+(1,1,1,21),(1,21,21),(1,1,123),(1,1,213),(1,1,132),(21,123),(21,213),(21,132).
		

Crossrefs

Programs

  • Maple
    read transforms; EULERi([seq(n!,n=1..30)]);
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(factorial):
    seq(a(n), n = 1..22); # Peter Luschny, Nov 21 2022
  • Mathematica
    ff = Range[n = 22]!; s = {}; For[i = 1, i <= n, i++, AppendTo[s, i*ff[[i]] - Sum[s[[d]]*ff[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, Apr 15 2016 *)

Formula

Product_{k>=1} 1/(1-x^k)^{a(k)} = Sum_{n>=0} n! x^n.
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Sep 04 2014, extended Nov 27 2020

A320776 Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, -1, -1, 0, 1, 0, -1, -1, -1, 1, 3, 3, -2, -5, -4, 0, 7, 7, 0, -9, -10, 2, 15, 15, -3, -27, -30, 3, 46, 51, 1, -71, -91, -7, 117, 157, 23, -194, -265, -57, 318, 465, 111, -536, -821, -230, 893, 1456, 505, -1485, -2559, -1036, 2433, 4483, 2022
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320777, A320778, A320779, A320780, A320781, A320782.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-NumberOfPrimeFactors(n))):
    seq(a(n), n = 0..59); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[PrimeOmega,100]]

A095993 Inverse Euler transform of the ordered Bell numbers A000670.

Original entry on oeis.org

1, 1, 2, 10, 59, 446, 3965, 41098, 484090, 6390488, 93419519, 1498268466, 26159936547, 494036061550, 10035451706821, 218207845446062, 5057251219268460, 124462048466812950, 3241773988588098756, 89093816361187396674, 2576652694087142999421
Offset: 0

Views

Author

Mike Zabrocki, Jul 18 2004

Keywords

Crossrefs

Programs

  • Maple
    read transforms; A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end; [seq(A000670(i),i=1..30)]; EULERi(%);
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000670):
    seq(a(n), n = 0..22); # Peter Luschny, Nov 21 2022
  • Mathematica
    max = 25; b[0] = 1; b[n_] := b[n] = Sum[Binomial[n, k]*b[n-k], {k, 1, n}]; bb = Array[b, max]; s = {}; For[i=1, i <= max, i++, AppendTo[s, i*bb[[i]] - Sum[s[[d]]*bb[[i-d]], {d, i-1}]]]; a[0] = 1; a[n_] := Sum[If[Divisible[ n, d], MoebiusMu[n/d], 0]*s[[d]], {d, 1, n}]/n; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Feb 25 2017 *)

Formula

Product(1/(1-q^n)^(a(n)), n >=1) = sum(A000670(k)*q^k, k>=0).
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Oct 09 2019

Extensions

a(0)=1 inserted by Alois P. Heinz, Feb 20 2017

A095975 -a(n) is inverse EULER transform of -A000041(n).

Original entry on oeis.org

1, 2, 5, 11, 27, 60, 147, 344, 839, 2031, 5017, 12379, 30921, 77407, 195121, 493451, 1253613, 3194303, 8166757, 20933754, 53798919, 138566312, 357647565, 924834079, 2395702801, 6215748612, 16150985071, 42024182520, 109485000777, 285578913962, 745728542725
Offset: 1

Views

Author

Vladeta Jovovic, Jul 20 2004

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n=0,1, add(add(d, d=divisors(j)) *b(n-j), j=1..n)/n) end: c:= proc(n) option remember; local j; add(c(j) *b(n-j), j=1..n-1)-n*b(n) end: a:= -proc(n) option remember; local d; `if`(n=0,1, add(mobius(n/d)*c(d), d=divisors(n))/n) end: seq(a(n), n=1..40); # Alois P. Heinz, Sep 09 2008
    # The function EulerInvTransform is defined in A358451.
    a := -EulerInvTransform(n -> -combinat:-numbpart(n)):
    seq(a(n), n = 1..31); # Peter Luschny, Nov 21 2022
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d, {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; c[n_] := c[n] = Sum[c[j]*b[n-j], {j, 1, n-1}] - n*b[n]; a[n_] := -If[n == 0, 1, Sum[MoebiusMu[n/d]*c[d], {d, Divisors[n]}]/n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Moebius transform of A055890(n).
a(n) ~ d^n / n, d = 2.69832910647421123126399866618837... (see A246828). - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Sep 09 2008
Showing 1-10 of 17 results. Next